
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Silent Data Corruption in Robot Operating System:
A Case for End-to-End System-Level Fault Analysis

Using Autonomous UAVs
Yu-Shun Hsiao∗†, Zishen Wan∗†,‡, Tianyu Jia†,¶, Radhika Ghosal†, Abdulrahman Mahmoud†,

Arijit Raychowdhury‡, David Brooks†, Gu-Yeon Wei†, and Vijay Janapa Reddi†

†Harvard University ‡Georgia Institute of Technology ¶Peking University

Abstract—Safety and resiliency are essential components of
autonomous vehicles. In this research, we introduce ROSFI, the
first robot operating system resilience analysis methodology, to
assess the effect of silent data corruption (SDC) on mission
metrics. We use unmanned aerial vehicles (UAVs) as a case study
to demonstrate that system-level parameters, such as flight time
and success rate, are necessary for accurately measuring system
resilience. We demonstrate that downstream ROS tasks such as
planning and control are more susceptible to SDCs than the
visual perception stage in the Perception-Planning-Control (PPC)
compute pipeline. This observation only becomes apparent when
we consider the complete end-to-end system-level pipeline, as
opposed to isolated compute kernels, as previous work does.
To enhance the safety and robustness of robot systems bound
by size, weight, and power (SWaP), we offer two low-overhead
anomaly-based SDC detection and recovery algorithms based on
Gaussian statistical models and autoencoder neural networks. Our
anomaly error protection techniques are validated in numerous
simulated environments. We demonstrate that the autoencoder-
based technique can recover up to all failure cases in our studied
scenarios with a computational overhead of no more than 0.0062
percent. Finally, our open-source methodology can be utilized to
comprehensively test the robustness of other Robot Operating
System (ROS)-based applications. It is available for public down-
load at https://github.com/harvard-edge/MAVBench/tree/mavfi.

Index Terms—Silent Data Corruption, Robot Operating System,
Anomaly Detection, Unmanned Aerial Vehicle, Resilience

I. Introduction
Silent Data Corruption (SDC) has become an important

problem for computing [1]. It has shown a significant threat in
server scale systems [2], [3]. However, there are emerging
application areas where SDCs’ effects extend beyond just
computational reliability into safety. Such an emerging area is
autonomous vehicles where safety and reliability are critical.

Prior works have studied SDCs in the context of autonomous
cars [4], [5]. However, prior work has yet to carefully examine
the system-level effects of the middleware that orchestrates
the entire perception, planning, and control (PPC) flow, where
resiliency can be baked in to ensure SDC detection and recovery.
To this end, we focus on the system-level implications of fault
injection on the Robot Operating System using unmanned aerial
vehicles (UAVs) as a proof of concept vessel, as UAVs are agile
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and highly sensitive to real-time input. UAVs are predicted
to have a significant market shortly due to their diversity in
applications and uses [6], [7]. Nevertheless, practical safety
considerations, such as performing unmanned tasks safely
and without collision, impede the wide adoption of these
safety-critical applications in many real-world scenarios. SDCs
caused by external radiation [8] and voltage noise [9] in the
computational element like the computing subsystem present
a major threat to the safe deployment of UAVs [10], [11].

There are multiple error mitigation techniques, including
dynamic verification [12] and redundancy [13] at the hardware
or software level to improve AVs’ resilience. Although current
methods prove their effectiveness, they face impracticality when
applied to SWaP-constrained AVs like UAVs, primarily due to
the constraints imposed by power requirements and the physical
dimensions of UAV systems. Recent software techniques [14]
for the resilience of convolutional neural networks (CNNs) on
GPU does not apply to UAVs that typically do not have access
to power-hungry GPUs onboard. Moreover, UAVs operate under
stringent constraints, including limited onboard battery capacity,
which imposes strict limitations on the total flight duration.
Therefore, UAVs need a lightweight fault mitigation technique
to prevent SDC from detouring or even crashing the UAV
without compromising flight performance and availability. To
this end, we set out to answer three fundamental questions.

1) What is the SDCs’ impact on system-level autonomy
metrics, such as flight time, energy consumption, and
mission success rate for autonomous aerial robots such
as UAVs?

2) Could conventional single, isolated-kernel SDC analysis
provide similar insights as our end-to-end fault character-
ization based on system- and application-level metrics?

3) How to enhance the safety and resilience of an au-
tonomous robotic system against SDCs with a lightweight
mitigation technique under SWaP constraints embedded
inside ROS?

To answer the first and the second question, we propose
system-level metrics for evaluation and perform extensive
fault characterizations (§IV) on a real physical ROS-based
autonomous system. The autonomous UAV compute consists
of an end-to-end PPC pipeline (Figure 1) that generates flight
commands based on the environment in real-time. The PPC
pipeline is the decision-making center for a UAV to maneuver

https://github.com/harvard-edge/MAVBench/tree/mavfi
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Fig. 1: End-to-end perception-planning-control computing
(PPC) paradigm. Each PPC stage contains multiple kernels, and
we study the safety and resilience of the end-to-end pipeline.

safely. A SDC could cause a UAV to detour or even crash.
To analyze the impact of SDCs, we adopt the bit-flip model
for fault injections into the UAV’s PPC pipeline and obtain
quality-of-flight (QoF) metrics to quantify the impact of the
faults on safety at the end-to-end whole application level.

Our findings show that application-aware metrics are essen-
tial for the resilience analysis of robotic applications. Analysis
focusing on an individual computing stage without considering
inter-kernel interactions leads to suboptimal insights and
misguided conclusions. Prior works [15]–[18] rely on Silent
Data Corruption (SDC) rate to determine the vulnerability
of a single compute kernel. However, a high SDC rate at a
kernel-level may have a negligible impact on the QoF metrics.

For the third question, we are interested in improving
UAV’s safety and resilience with a lightweight mitigation
technique. To this end, we propose two software-directed and
lightweight enhancements for the resilience of UAV systems
(§V). Because agile robots like UAVs are constrained by size,
weight, and power (SWaP), lightweight solutions are necessary.
We perform data preprocessing to extract UAV’s kinetics by
calculating the delta value of the inter-kernel states. Based on
the delta values, we perform two anomaly detection techniques.
First, we perform a Gaussian-based anomaly detection (GAD)
and recovery mechanism (§V-C). This technique features a
Gaussian-based range detector to exclude outliers. Second, we
use an autoencoder-based anomaly detection (AAD) technique
for improved UAV resilience (§V-D). AAD adopts a neural
network-based autoencoder to learn normal UAVs’ kinematics
and detect anomalies according to the reconstruction error of
the input delta values. We show that our application-aware
error detection and recovery techniques save energy by up to
1.91× than traditional redundancy-based hardware solutions
(e.g., Dual Modular Redundancy (DMR), Triple Modular
Redundancy (TMR)) that increase the weight and form factor
of UAV and lead to performance overheads.

We evaluate the effectiveness of the two detection and
recovery techniques across four vastly different types of
environments on two computing platforms. Our experimental
results demonstrate that the Gaussian-based technique recovers
up to 89.6% of failure cases, and the autoencoder-based
can recover all failures in the best-case scenario. Regarding
QoF metrics, the Gaussian-based technique can recover the
SDC-degraded flight time by up to 63.5% and 73.0% for
the autoencoder-based technique. Furthermore, our measured
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Fig. 2: System stack for a UAV. UAVs are complex cyber-
physical systems with strong inter-dependencies between the
computing and physical components. We focus on how faults
in the companion computer affect the rest of the system.

overhead is less than 0.0062%. Moreover, our end-to-end fault
analysis framework is more generally applicable to other types
of (U)AVs.

In summary, the contributions of this work are as follows:
• First, we present an end-to-end ROS-based application-

aware resilience analysis framework ROSFI to analyze
robot applications’ fault tolerance characteristics with
proper metrics. ROSFI is seamlessly integrated with the
ROS ecosystem and can be adapted for various ROS-based
applications.

• Second, we conduct fault tolerance characterizations of
the PPC pipeline from both kernel-level and system-
level. We show that application-aware metrics are essential
to understanding kernel vulnerability and fault’s impact
compared to the conventional isolated analysis.

• Third, we present two low-cost anomaly error detection
and recovery schemes and evaluate them on different UAV
configurations. By integrating anomaly error detection
and recovery in ROS, We demonstrate that SDC impact
on safety can be rectified in real-time with negligible
overhead.

II. Background and Motivation
Safety standards. Many efforts have been dedicated to

autonomous vehicle safety [19], [20]. The safety standard
ISO 26262 [21] has been developed to provide guidance
and safety requirements for vehicle and their systems. There
are also online safety protection hardware systems developed
for vehicles, such as the NXP FS4500 system for functional
safety measurement. A variety of fault tolerance analyses has
been performed for the computing system [4], [22] of AVs.
Unfortunately, to date, there are no comprehensive standards
for autonomous UAV assessment. Prior works mainly focus
on evaluating learning-based navigation system [23]–[25].
However, PPC compute paradigm-based UAV system is widely
adopted in UAV systems nowadays, and its fault tolerance has
not been adequately explored. Therefore, we take the first step
to explore how SDCs propagate through the PPC pipeline and
impact the safety of UAV systems. In this work, we define
UAV reliability as the fault tolerance of autonomy kernels and
UAV safety as the quality of flight at the application level for
mission execution.
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TABLE I: Comparison of fault injection techniques.
Abstraction

Layer Platform Perf.
(cycles/sec)

Exec.
Time (1 run)

Exec.
Time (1000 runs)

RTL
IVM Alpha processor
RTL simulation [35]

6×102 4.2×105 hours 1.74×107days

Micro-architecture gem5 simulator [36] 3×106 83.3 hours 3472 days

FPGA Emulation
OpenSPARC T1

FPGA emulation [37]
1×107 25 hours 1040 days

Architecture SPARC simulator [38] 6×107 4.17 hours 173.6 days
Software (Ours) x86 processor [39] 3×109 5 mins 3.48 days

System Layer. To understand how to address safety and
resilience in UAVs, we must understand their complex system
configuration. To this end, Fig. 2 presents the software-hardware
stack of a UAV system. The system layer includes both Robot
Operating System (ROS) and Linux. ROS is the commonly
used “operating system” to provide communication functions
and resource allocation for robotic applications. Despite its
name, ROS is not an operating system but a collection of
robotics middleware and tools aimed at managing cyber-
physical systems by providing services for heterogeneous
computing, low-level device control logic, and message-passing
between processes. ROS consists of multiple ROS nodes, ROS
services, and a ROS master to support the functionalities
and communications [26], [27]. Underneath ROS, the Linux
system maps workloads to compute units and schedules tasks
at runtime. Each ROS node is treated as a process that is
scheduled to a thread on CPU cores.

Hardware Layer. This layer consists of sensors, a com-
panion computer, and a flight controller. The companion
computer is used to execute the PPC kernels. These kernels
usually act as ROS nodes and run on a general-purpose
processor (e.g., CPU). Unlike autonomous vehicles, UAVs
are limited in computing resources and energy budget, and
thus, it is less common to equip UAVs with power-intensive
GPU. The companion computer would generate high-level flight
commands (e.g., velocity in x, y, z directions) in response to the
sensor readings. The flight controller converts the high-level
flight commands to low-level actuation commands to control
and stabilize the UAV. In this work, we consider the faults
in the companion computer and not the flight controller. The
former determines the flight commands based on the real-time
sensor readings, while the latter executes the commands. For
instance, a corrupted yaw rotation generated by the companion
computer could direct the UAV to point toward an obstacle and
cause collisions. Meanwhile, the flight controller only executes
the given commands without knowing the world models.

Algorithms. There has been significant advancement in
perception, localization, mapping, and deep learning. Among
all autonomy paradigms, the PPC computational pipeline is
a widely used system [28]–[30]. In the PPC pipeline, the
perception stage takes the sensor data and creates three-
dimensional models to provide a volumetric representation of
space, such as a point cloud [31] and occupancy map [32]. The
three-dimensional models are then fed into the planning stage
to determine a collision-free trajectory by running a motion
planner [33]. Finally, based on the UAV’s dynamics, the control
stage follows the planned path through controllers [34].

III. ROS Fault Injection
To analyze SDCs’ impact on ROS, we first and foremost

need a fault injection framework in the ROS middleware for
injecting faults into the end-to-end UAV application pipeline to
assess their impact systematically. This section presents ROSFI
that supports fault injection with QoF metrics for evaluation.

A. Fault Injection Method Choices

Faults can be injected and simulated at different levels
of the stack, ranging from low-level RTL [40] to high-level
software [4], as shown in Tab. I. Although RTL simulation
can accurately capture logic errors at the logic or gate levels,
it requires an extremely long simulation time. In addition, it
needs the RTL design or netlist of target processors, which is
normally unavailable. On the other hand, software-level error
injection has been widely utilized for system analysis with large
vulnerability exploration space, showing significantly shorter
simulation time and wide error cover range [41].

We adopt a software-level fault injection method to support
system-level analysis, which aligns with previous fault tolerance
studies for AVs by NVIDIA [4]. Software-level fault injection
presents the best approach for an end-to-end study of the
UAV pipeline; end-to-end implies the flow of data from the
perception stage to the planning and control stages.

We assume that faults injected in ROSFI can corrupt the
architectural states. Memory and caches are assumed to be
protected with ECC. Each injected fault is characterized by
its location and the injected value [4]. The faults injected into
the architectural states of processors can manifest as errors
in the inputs, outputs, and internal states of application-level
ROS nodes. ROSFI can directly inject errors in ROS node
outputs by corrupting the corresponding variables based on
hardware layer results. These variables are ultimately stored
in different levels of storage hierarchies. Single- or multiple-
bit faults cause corruption of variables when not masked in
hardware. Hence, faults are injected into these memory units,
and the application-level variables are corrupted accordingly
to emulate the faults.

The need for a software-based approach is justified by Fig. 3,
which demonstrates the fault injection execution time of single-
kernel and UAV experiments at different layers. One UAV
run includes hundreds of single-kernel executions for the UAV
autonomous navigation experiments, which takes 5 minutes per
run or 3.48 days per scenario (i.e., 1000 runs) with our software-
level execution. Consequently, it is infeasible for extensive fault
analysis involving thousands of fault injections at the lower
levels of the abstraction layers.

B. ROS Fault Injector Implementation

Fig. 4 illustrates the fault injection infrastructure of a
ROS-based UAV system, including environment and UAV
simulation on the host simulator and the UAV’s PPC pipeline
integrated with ROSFI on the companion computer. Each PPC
stage contains one or multiple ROS nodes, and each ROS
node comprises a single compute kernel, such as point cloud
generation or motion planner. ROS node communicates through
ROS topics (one-to-many communication) and ROS services
(one-to-one communication). The ROSFI is built as a ROS
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node to maintain our framework’s portability, which leverages
the ROS communication protocol and Linux system call.

To establish UAV experiments, we leveraged an open-source
ROS-based UAV simulator, MAVBench [28]. MAVBench in-
cludes Unreal Engine to simulate the surrounding environment,
AirSim simulator [42] to capture a UAV’s dynamics and
kinematics, and PPC computational pipeline to generate flight
commands in real-time. The AirSim interface allows the PPC
pipeline to access the sensor data and send back the flight
commands to the flight controller in the AirSim simulator. The
PPC pipeline processes the sensor data and generates flight
commands continuously until the mission is complete. Finally,
the mission QoF metrics are recorded. Although we use UAVs
as an example in our framework, the fault analysis methodology
is broadly applicable to any ROS-based use case.

Fig. 4 also illustrates an error propagation example within
the system. For instance, when a fault is injected at the Motion
Planner kernel and manifests as a corruption of execution
results (i.e., Multidoftraj, Trajectory), which eventually corrupts
a flight command and impacts the overall QoF. The framework
works on x86/Linux platforms. Fig. 5 shows the instruction-
level fault injection details of ROSFI. Each oval node is a ROS
node. The figure illustrates the fault injection sequence using
an example for ROS node 2. During the system initialization
phase, the ROSFI node publishes its process ID (pID) to all

the other nodes and subscribes to their pID. Thus, the ROSFI
node can attach and manipulate the other ROS nodes in the
system via the ptrace system call supported by Linux. The
ptrace system call allows synchronization and manipulation
of processes’ register files with much less overhead than the
ROS communication protocol.

ROSFI is the first fault injection framework built on top of
ptrace system call and ROS. It emulates SDCs that occur in the
processor’s functional units (e.g., arithmetic and logic units)
by introducing transient bit-flips at the source or destination
register of only one dynamic instruction, which is known as
instruction-level fault injection [43]–[45]. We do not consider
faults in the memories or caches as they can be protected by
error correction codes (ECCs) in safety-critical applications.
ECC is used to protect memory for robots that use TX2-level
hardware (as considered in the paper). We also assume no
faults in the processor’s control logic, which constitutes only
a small portion of the processor. This is in line with previous
fault analyses. [16], [17], [46]. Hence, while our approach does
not cover all the fault injection sites, it provides us with quality
early-stage, end-to-end insights.

To inject faults, ROSFI selects a random time point to
pause all the nodes during the simulation of real-time ROS
applications. All ROS nodes’ execution will be stopped before
fault injection, ensuring that every node follows the original
executive order. After all the nodes have stopped, the general-
purpose and floating-point register files of the target node
(i.e., node 2) are fetched via the ptrace system call, with
the instruction pointer register decoded to access the current
operating register. The number of registers being accessed
by an instruction ranges from zero to two. If the value is
zero, ROSFI resumes all ROS nodes’ execution and repeats
the above steps to obtain a new instruction. For more than
one register under operation, ROSFI randomly chooses one
register to inject. For the source register, according to the user-
defined injection configuration, a single bit-flip or multiple
bit-flips are introduced. For the destination register, before fault
injection, ROSFI would step toward the next instruction to
allow the current instruction to finish the write, which avoids
the corrupted destination register being overwritten by the
current instruction. After fault injection, the corrupted register
is written back to the target node’s register files, and all nodes
are notified to resume the execution. The faults injected into the
registers of the processors could manifest as errors in the inputs,
outputs, and internal states of the computational kernels. To
better understand error propagation among PPC stages, ROSFI
can inject errors into the inter-kernel states (the input of the
other kernel) via source-level fault injection [4].

ROSFI can inject either single or multiple bit-flips simulta-
neously. In a previous study [47], it was shown that a single
bit-flip is good enough for fault analysis since it can capture
first-order vulnerability characteristics as well as multiple-bit-
flips analyses. Therefore, for the analysis results in the paper,
we mainly focus on a single bit-flip. For simplicity and clarity,
we refer to single-bit-flip fault injection in the rest of the paper
unless multiple bit-flips are specified.

ROSFI has the potential to extend to cover the memory
and control logic of the processor. For memory, in this paper,
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TABLE II: Comparison between ROSFI and prior fault injection methods.

LLFI [44] PINFI [43] CLEAR [48] SASSIFI [15] DriveFI [4] ROSFI (This work)
Autonomous Vehicle ✗ ✗ ✗ ✗ ✓(Vehicle) ✓(Drone)

Support ROS ✗ ✗ ✗ ✗ ✗ ✓

Platform CPU CPU CPU GPU GPU CPU

Injection level IR-level Instruction-level RLT-level Instruction-level Instruction-level, Source-level Instruction-level, Source-level
Single Bit-flip ✓ ✓ ✓ ✓ ✓ ✓

Double Bit-flips ✓ ✗ ✗ ✓ ✓ ✓

Multiple Bit-flips ✗ ✗ ✗ ✗ ✓ ✓
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we assume memory and caches are protected with SECDED
codes. The faults injected in instructions may result in accessing
the wrong data for computation, thus corrupting the variables.
Faults in memory will result in corrupted computation data as
well. These variables are ultimately stored in different levels
of storage hierarchies (e.g., registers or caches). For control,
since ROSFI obtains the whole instruction, it is able to modify
the opcode of the instruction, thus the control logic.

C. Comparison to Prior Art

SDCs and resilience analysis have been studied for single
kernels on CPU and GPU, as shown in Tab. II. However, prior
methods [15]–[18] focus on the SDC rate of a single kernel,
which does not directly translate to the impact of SDCs on
UAVs’ QoF metrics. On the one hand, more recently, DriveFI
[4] explored the resilience impact of SDCs for autonomous
driving systems on power-hungry GPU platforms.

However, there currently does not exist a fault injection
framework to analyze the resilience of ROS-based applications
where the ROS nodes typically run on CPU with ROS [49].
Furthermore, a difference between prior autonomous vehicles
resilience analysis studies and UAVs is that the compute envi-
ronment of a UAV diverges from the recent trend in autonomous
vehicles. While we find that most recent systems and tools are
migrating to GPUs for increased parallel processing and DNN
acceleration (and thus, may require GPU-centric resilience
analysis tools such as SASSIFI [15] or NVBitFI [50]), UAVs
continued to operate in the CPU realm for flexibility and lower
energy needs. Currently, UAVs are intrinsically associated with
CPUs due to the reliance on ROS (§II).

IV. End-to-End PPC Pipeline Fault-Tolerance
This section presents the fault tolerance analysis at two

granularity levels, i.e., single-kernel level and application-
aware system-level performance. We explore how errors would
impact a single kernel and propagate through the whole PPC
pipeline to affect UAV QoF metrics. Through the comparison,
we observe that isolated, single-kernel analysis (as is common
practice) provides different or even opposite insights on the
vulnerabilities of kernels than the application-aware analysis,
which shows that end-to-end application-aware fault analysis
is crucial to capturing SDCs’ impact at the system level.

Metrics: For single-kernel level analysis (§IV-A), we use
benign, crash, hang, and SDC rates to evaluate the resilience
of representative autonomy kernels. For application-level
analysis (§IV-B), we use UAV QoF (i.e., mission success rate,
time, energy) to evaluate end-to-end system performance and
resilience characteristics.

A. Kernel-level Fault Tolerance Analysis

To prove the importance of application-aware fault analysis,
we first conduct the single-kernel analysis with instruction-
level fault injection. The single-kernel fault injection flow
is similar to prior fault injection works [51]. We show that
conducting similar analyses in a complex PPC pipeline can
lead to misguided conclusions, specifically for UAV systems.

We evaluate the common kernels in the PPC pipeline, in-
cluding OctoMap [52] for the perception stage, three sampling-
based motion planners [53] (i.e., RRT, RRTConnect, RRT ∗) for
the planning stage, and PID controller [28] for the control stage.
For each kernel, we perform instruction-level fault injection for
5000 runs in total. Each kernel is run without fault injection
to obtain the error-free golden results. With fault injection,
there are four outcomes: execution results same as the golden
results (i.e. benign), execution exceptions (i.e. crash), infinite
execution time (i.e. hang), and execution results different from
the golden results (i.e. silent data corruption (SDC)) [54].

From a single-kernel perspective, the perception stage is
the most critical when an SDC manifests. Fig. 6 shows that
most compute kernels are more than 25% benign error-tolerant
except for OctoMap at the perception stage. This is because
SDC could easily manifest at the output (Octree) with noisy
values for the OctoMap kernel. Hence, OctoMap is less resilient
than sampling-based planning and PID control algorithms. On
the other hand, the path planning kernels (RRT, RRTConnect,
RRT ∗) are all sampling-based algorithms, which are known
for their high efficiency and performance for low-dimensional
planning. Injected faults should not affect output results as
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long as the corrupted way-point is not sampled. The more
way-points we sample, the higher the probability the planning
algorithms could sample a corrupted way-point, resulting in
SDC. RRTConnect runs two RRT algorithms from both start
and goal positions, ending up with fewer sampled way-points
than RRT. RRT ∗ is the optimized version of RRT algorithm
to find the shortest path by selecting even fewer way-points
than RRT and RRTConnect, making RRT ∗ having the least
SDC. The PID algorithm at the control stage also experiences
around 25% benign cases as the PID has a simple self-healing
mechanism to clip data outside of a bounded range.

B. End-to-End, System-level Fault Tolerance Analysis

Compared to the single-kernel fault analysis, we next conduct
application-aware fault analysis based on our ROSFI framework.
This end-to-end system-level characterization investigates how
kernel errors would propagate through PPC pipelines and
impact UAV performance. We assess the performance of the
UAV using QoF metrics, encompassing key aspects such as
flight success rate, distance, time, and energy. Ultimately,
these metrics matter from an “application” or system-level
perspective. The success rate quantifies the ratio of successful
missions to the total number of flight runs. We define a mission
as successful when the UAV reaches its destination without
encountering any collisions. Conversely, a failure occurs when
the UAV either collides with obstacles or is unable to identify
a viable path to its intended destination. Flight time represents
the total duration required for the UAV to reach its designated
destination. Similarly, flight energy signifies the overall energy
expended by the UAV to reach the destination. Since rotors
dominate mission energy (∼95% [28]), flight energy positively
correlates with flight time. It is worth mentioning that with
reduced single-mission flight energy (E), the number of
completed missions (N) under a battery charge (Eb) and success
rate (SR) will increase through N = SR× (Eb/E).

We adopt the instruction-level fault injector supported by
ROSFI to corrupt the PPC kernels. In our default settings,
the PPC pipeline includes Point cloud generation, OctoMap,
Collision check for perception, RRT* for planning, and PID for
control. Two other common planning algorithms are evaluated
at the planning stage, i.e., RRT and RRTConnect. Each kernel
has experimented with 100 fault injection runs. Besides fault
injection, 100 error-free experiment runs are defined as Golden.
In each experiment, all kernels in the PPC pipeline would be
launched by ROS to complete a given navigation task. Only
one of the kernels would have a one-time fault injection during
each flight mission for fault injection runs. We achieved a
4.45% error margin with a 95% confidence level with 100

experiment runs per configuration. Without loss of generality,
we limit our discussion to a navigation task in the Sparse
environment here. More results are demonstrated in §VI.

Counter to the single-kernel perspective, from an end-to-
end application perspective, the perception stage is the least
critical when a SDC manifests. Prior works generally tend
to focus on error resilience of the perception stage [1], [14],
[55]. These are aligned with the single-kernel analysis, which
shows that OctoMap, the main algorithm for perception, has
the highest percentage of SDC among the evaluated kernels.
However, as we show, for the perception stage both Point Cloud
Generation and OctoMap have little to negligible impact on
the system metrics, as shown in Fig. 7.

The reason why OctoMap has the least impact on QoF
metrics is that even if an occupied voxel is corrupted and
mistaken as a free voxel, the presence of all other surrounding
voxels as occupied ensures that the UAV can still accurately
determine the locations of obstacles. This holds as long as
the resolution of the OctoMap is adequate, allowing the
UAV to make the correct decisions regarding its flight path.
This counter-intuitive insight underscores the significance of
conducting comprehensive end-to-end analysis.Collision Check
is the critical kernel in the perception stage since a false alarm
can lead to trajectory re-planning or collisions.

From the end-to-end application-level perspective, plan-
ning, and control are more critical than perception, counter-
intuitive to the single-kernel analysis. While the SDC
percentages of planning and control kernels are lower than
OctoMap, corrupted outputs (e.g., yaw, roll, pitch, velocity)
from these two stages can directly lead to a detour or crash of
the UAV. From Fig. 7a, even though the average flight time is
similar, the range of RRT, RRTConnect, RRT*, and PID is much
wider than Octomap and Golden. The error propagation of the
corrupted execution results could greatly increase the flight
time by up to 57.3% and even lead to degradation of success
rate by up to 8% as shown in Fig. 7c. Hence, the planning
and control stages are more critical than the perception stage
from an end-to-end application perspective.

C. Error Propagation Across PPC Stages

To understand error propagation across kernels, we analyze
the impact of corrupted inter-kernel states in the PPC pipeline.
This provides insights to improve the PPC kernels and facilitate
error detection and mitigation in §V. We do source-level fault
injection for this inter-kernel error propagation study with 100
navigation task runs for each evaluation.

As shown in Fig. 8, inter-kernel states exhibit different
resilience to faults and have diverse impacts on UAV QoF
metrics based on their functionality. For example, in the
perception stage, future collision seq is much more robust
than time to collision, whose QoF metrics noticeably vary
when compared to the golden run. Faults in time to collision
can skew the UAV’s perceived distance to obstacles. Similarly,
data corruption of (x,y,z) and yaw of way-points planned by
motion planner can lead to a wrong direction or crash into
obstacles, and faults in (vx, vy, vz) could make the UAV fail to
keep track of a trajectory. As a result, the distorted trajectory
leads to collision or increased flight time and mission energy.
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Fig. 7: Application-aware system-level end-to-end resilience analysis (flight time, energy, success rate) with ROSFI framework.
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Fig. 8: End-to-end fault tolerance analysis.

Bit-flips in different data fields have distinct levels of impact
on UAV performance. Prior works have evaluated data field
impact on the processor and neural network [1], and we
further corroborate this in end-to-end UAV systems from the
application-level perspective. We conduct source-level fault
injection at the float64 inter-kernel states (x, y, z), which
contains 1 sign bit, 11 exponent bits, and 52 mantissa bits.
Faults in sign and exponent fields have a greater impact on
the UAV’s resilience and result in increased flight time, energy,
and failure cases, as shown in Fig. 9a. Faults in the sign and
exponent will result in a greater change in the inter-kernel
states than faults in the mantissa field. For example, a single
bit-flip at the exponent and sign could corrupt 1.38 to 0 and -
1.38, respectively, as illustrated in Fig. 9b. The huge differences
show that sign and exponent fields are more critical to the UAV
system when a SDC manifests and propagates through the PPC
pipeline. We further leverage this insight in lightweight UAV
anomaly detection in §V.

To compare single bit-flip with multiple bit-flips, we evaluate
the performance impact with multiple bit-flips fault injection
as shown in Tab. III. In this experiment, 100 fault injections
are performed for 1-, 3-, and 5-bits, respectively, at (ax, ay,
az), which are the output states of the planning stage. From
1-bit to 5-bits fault injection, the average flight time and energy
slightly increase by 6.2s and 3.9kJ, respectively, and the success
rate decreases by 3%. Since more bit-flips are more likely to
affect the sign and exponent fields, the value changes could be
more dramatic with multiple bit-flip fault injection. However,
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(b) Bit-flip analysis.

Fig. 9: The impact of fault injection at different data fields.

the slight differences between single bit-flip and multiple bit-
flips also show that single bit-flip can capture the first-order
vulnerability characteristics as shown in the prior work [47].

TABLE III: QoF metrics with a different number of bit-flip
injections.

Bit Flips
Flight

Time (s)
Flight

Distance (m)
Total

Energy (kJ)
Number of
Re-plans

Success
Rate (%)

0 (golden) 94.6 49.5 51.4 3.71 100
1 105.6 55.9 57.2 4.07 92
3 107.3 56.8 58.7 4.19 91
5 111.8 59.4 61.1 4.28 89

V. Error Detection and Recovery
To enhance safety and resiliency, we further explore the

detection and recovery technique based on the observations
from ROSFI. As the conventional redundancy-based hardware
protection introduces significant overhead, we propose two
software-level low-overhead anomaly detection and recovery
schemes for UAVs. The proposed schemes detect anomalous
behavior of the inter-kernel states in the PPC pipeline and
cease the error propagation, ensuring UAV’s safety.

A. Overview of Detection and Recovery

Due to the low overhead and high effectiveness of anomaly
detection , it has been used to distinguish anomaly from normal
data distribution in many applications [56]. However, there is
no effective general anomaly detection technique for different
domains. Moreover, autonomous machines are complex systems
that typically involve multiple kernels’ heterogeneous comput-
ing. It is infeasible to separate normal data from anomaly based
on the system’s input (e.g., sensor readings) and output (e.g.,
flight commands). The heterogeneity also makes it hard to
extract information from the system for anomaly detection. As
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Fig. 10: The proposed anomaly detection and recovery scheme
for UAV computational pipeline.

a consequence, no prior work has focused on anomaly detection
to enhance the resilience of autonomous aerial vehicles.

We propose two anomaly detection techniques to detect SDC
that could cause a safety hazard for UAVs, including Gaussian-
and autoencoder-based techniques. It is observed that both
techniques can greatly enhance the safety and resilience of
UAVs with a low computational overhead. Fig. 10a shows the
proposed anomaly detection and recovery scheme for UAVs.
According to the analysis in Section IV-C, the inter-kernel
states as shown in Fig. 8 are monitored for the anomalous
SDC. The monitored states pass through a data preprocessing
module to increase the detection performance while further
reducing the computational overhead. After data preprocessing,
the processed states go into either of the proposed anomaly
detection techniques for supervision.

Error recovery is a feedback loop from the detection modules
to the PPC pipeline. Once an anomalous behavior is detected, an
alarm signal will be raised by the detection modules, triggering
the recomputation of the corresponding stage, which prevents
the corrupted inter-kernel states from propagating to the other
kernels. The proposed detection and recovery system can greatly
increase the resilience of UAV’s PPC pipeline against SDCs
that degrade the safety and flight performance of UAVs. Our
approach focuses on SDC as ROS node crash can be detected
by the ROS system. The ROS master node would restart the
node automatically if it crashes [57].

B. Data Preprocessing

In Fig. 10a, the monitored inter-kernel states from the PPC
pipeline are processed in the data preprocessing block before
being sent to the anomaly detection block. Data preprocessing
has two steps, including data format transformation and delta
calculation. First, for data format transformation, the sign and

exponent bits of float64 states are transformed into 16-bits
integer states. Since SDC at the mantissa bits of float64 are
insignificant as shown in §IV-C, only the sign and exponent
bits are monitored to reduce the detection overhead. Second,
the deltas of the incoming states are calculated. We define delta
as the number of value changes from the previous time point
to the current time point for an inter-kernel state.

Fig. 11 shows the insight of using the state’s delta for
anomaly detection. For most states, the value could have
either uniform or Gaussian distribution. However, the uniform
value distribution is not well suited to Gaussian-based anomaly
detection, leading to very low detection accuracy. The uniform
distribution can be transformed into a Gaussian distribution by
calculating the states’ delta, leveraging the inter-kernel states’
temporal dependency. Furthermore, the state’s delta range is
much smaller than the original data. For instance, as shown
in Fig. 11, the range of multi x, multi vx, and multi ax states
are reduced by 98%, 94%, and 76%, respectively, making the
differences between normal and anomaly data even larger. Thus,
data preprocessing can increase anomaly detection performance
while decreasing the overhead of detection.

C. Gaussian-based Anomaly Detection

Fig. 10b shows the design of the Gaussian-based Anomaly
Detection (GAD). Each PPC stage has a corresponding GAD
that consists of several customized GAD (cGAD) for each
inter-kernel state. If the value of an incoming state is outside
the range of its normal data distribution, its cGAD will send out
an alarm. The alarms from each cGAD are gathered for each
PPC stage respectively. An alarm from a GAD would trigger
the recomputation path of its corresponding stage, stopping
the error propagation to the next stage.

The Gaussian model parameters (i.e., mean, standard devia-
tion) for each cGAD are estimated as following equations:

Mk = Mk−1 +(xk −Mk−1)/k (1)

Sk = Sk−1 +(xk −Mk−1)(xk −Mk) (2)

where k is the number of samples, Mk is the mean value for
the k samples, and Sk is an auxiliary term used to compute
standard deviation σ . At initialization, we introduce and set
the terms M1 = x1,S1 = 0. The parameters are updated online
with the recurrence formulas above for new incoming data
xk [58]. For k ≥ 2, the standard deviation σ can be derived by
σ =

√
Sk/(k−1). Whenever the value of the incoming data is

n sigma away from the mean value, the alarm of the cGAD will
be raised. The number of sigma n is a configurable variable
that can be optimized based on the complexity of the flight
task and environment. To ensure the Gaussian models have
sufficient samples before starting anomaly detection, we first
have the model updated with error-free training environments.

D. Autoencoder-based Anomaly Detection

Fig. 10c shows the Autoencoder-based Anomaly Detection
(AAD). The AAD block collects the processed states from all
PPC stages as input. An alarm will be raised and triggers
the recomputation of the control stage if an anomaly is
detected. The proposed autoencoder comprises an encoder
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Fig. 11: Histogram comparison between the states’ value and
delta after data processing.

with three fully connected layers and a decoder with two
fully connected layers. The encoder has an input layer of 13
neurons, a hidden layer of 6 neurons, and an output layer of 3
neurons. The decoder has an input layer of 3 neurons, which
takes the compressed data from the encoder, and an output
layer of 13 neurons. The output of the decoder represents
the reconstructed input data. The reconstruction error is the
difference between the input and output of the autoencoder. We
use the mean squared error during the unsupervised training as
the reconstruction error. If the reconstruction error is beyond
the threshold at the inference phase, the alarm will be raised.
The threshold is the upper bound of the reconstruction error
in the error-free golden run.

Rather than a separate Gaussian-based detection module for
each PPC stage, we use a single autoencoder for the whole
PPC pipeline to leverage the correlation among the inter-kernel
states. Once an anomaly is detected, the alarm triggers the
recomputation of the control stage. In this way, the autoencoder
scheme achieves higher detection performance while reducing
the recomputation overhead as shown in §VII-D.

E. Recovery Scheme

Once an anomalous inter-kernel state is detected, the recom-
putation path will be triggered to cease the error propagation.
The corresponding compute stage fetches the newest data from
the previous compute stage or sensor and re-generates the
results. Take the navigation task as an example. If an alarm
is raised in the perception stage, the stage starts to recompute
and fetch the newest RGB-D camera data. Then, Point Cloud
Generation, Octomap, and Collision Check kernels process the
data and generate results for the following stage. Similarly, if
an alarm is raised in the planning stage, the planning algorithm
will fetch the latest occupancy map from the perception stage
and plan a new trajectory. Finally, the flight command is
monitored at the control stage before being sent back to the
UAV. If an alarm is raised, the control stage will abandon the
current anomalous waypoint and fetch the next waypoint of
the trajectory, generating correct flight commands.

F. Anomaly Detection and Recovery on ROS
The anomaly detection and recovery scheme are built as a

ROS detection node. This node contains the data preprocessing
and anomaly detection functions (as explained previously).
The detection node subscribes to the topics containing the
inter-kernel states in the PPC pipeline as input and publishes
recomputation signals to the corresponding stages if the
detection function raises the alarm. The detection node can thus
continuously supervise inter-kernel states of the PPC pipeline,
avoiding error propagation among kernels and thus increasing
the resilience of UAV’s computational pipeline with negligible
overhead.

VI. Experimental Setup
Hardware-in-the-loop Simulator. We used a closed-loop

simulator as the experimental platform [28], including Unreal
Engine (UE) to simulate the scenarios and AirSim to capture
the UAV’s kinematics. Sensors, including RGB-D camera and
IMU, used in the experiments, are common for UAVs. An Intel
i9-9940X CPU and an NVIDIA GTX 2080 Ti GPU are used
as the host machine to simulate environments and the UAV.
The companion computer has a CPU that takes sensory data
and generates flight commands for UAVs.

Training Environments. To create a training dataset for
the autoencoder-based technique, we built an environment
generator with configurable parameters (i.e., obstacle density
and size of obstacle). The obstacle density is defined as the
probability of a 10 * 10 grid spawned with an obstacle.
Each obstacle is a cuboid with n * n and infinite height
(n is in [1, 10]). [obstacle density, size of obstacles] is
defined as an environment configuration pair. We collect data
from randomized environments with the combinations of two
obstacle densities (0.05 and 0.2) and two sizes of obstacles
(3 and 5). Therefore, there are four configuration pairs in
total, and each is run 25 times. A random seed is used to
randomize the environment. For the Gaussian-based technique,
the Gaussian models are updated with the same error-free
training environments.

Evaluation Environments. The anomaly detection and
recovery schemes are evaluated in four environments, which
are unknown to the UAV. So we are not evaluating on training
data. The Factory and Farm are provided by UE, representing
common navigation scenarios with blocks, walls, and hedges.
We generate the Sparse with [0.05, 3] and the Dense with [0.2,
5] using our environment generator. The random seed is fixed.

Overheads. The QoF metrics do not include the fault
injection time since the ROS nodes are paused during fault
injection. In terms of simulation time, ROSFI only takes less
than 5 ms for one-time fault injection, which is negligible
for a typical flight mission that takes more than 100 s. For
anomaly detection and recovery runs, we quantify the overhead
of Gaussian and autoencoder-based techniques in §VII-D.

VII. Evaluation
To evaluate the anomaly detection and recovery scheme,

we run 100 error-free simulations for each environment as
the baseline (golden run). Then, we conduct 900 single-bit
injections at instruction-level for each environment, including
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(a) UE Factory. (b) UE Farm. (c) Sparse. (d) Dense.

Fig. 12: The effectiveness of the proposed anomaly detection and recovery schemes in terms of flight time. D&R(G) and
D&R(A) represent the Gaussian-based and autoencoder-based schemes, respectively.

TABLE IV: Flight success rate in 4 evaluation environments.

Environment Factory Farm Sparse Dense
Golden Run 100.0% 100.0% 95.0% 85.0%
Injection Run 91.7% 97.3% 88.3% 75.3%
Gaussian-based 98.7% 99.3% 94.3% 83.0%
Autoencoder-based 99.3% 100.0% 95.0% 84.7%

300 runs for each setting (i.e., fault injection (FI), detection &
recovery with Gaussian (D&R(G)), and detection & recovery
with autoencoder (D&R(A))), as shown in Fig. 12. In each
setting, we have 100 fault injections for each PPC stage. Each
run includes a one-time single-bit injection. A total of 1000
runs is chosen where each run takes about 5 minutes. Even
though ROSFI introduces a negligible overhead of only 5 ms,
the experiment time is a limiting factor for the total runs.

A. Safety Metrics

Improvement of success rate. Tab. IV shows the success
rates of UAV flights across four environments. In the fault
injection runs, the success rate drops 9.7% in the Dense
environment. Faults may easily cause collisions or fail to find a
collision-free path in complex environments. By contrast, Farm
is an obstacles-free environment. Even if a UAV detours from
its path, there are more feasible paths toward the destination
than a complex environment. With the anomaly detection and
recovery scheme, Gaussian- and autoencoder-based techniques
recover up to 89.6% and 100% (fully recover) of failure cases,
respectively. Generally, the autoencoder recovers more failure
cases than the Gaussian-based scheme and increases the success
rate close to or the same as the error-free runs.

Improvement of flight time. Fig. 12 shows the flight time
of all successful cases in Tab. IV across four environments.
Similar to §IV-B, the fault injection runs result in a much
wider range of flight time than the golden run and increase
the flight time by 73.8%, 74.2%, 62.6%, and 93.3% in the
worst case for each environment, respectively. However, with
Gaussian-based anomaly detection and recovery, many outliers
can be recovered, and the worst-case flight time is recovered
by 56.4%, 63.5%, 49.0%, and 58.7%. On the other hand, the
autoencoder-based technique recovers most of the outliers and
can recover the worst-case flight time by 64.2%, 68.4%, 57.8%,
and 73.0%, outperforming the Gaussian method.

Comparison of Gaussian-based and autoencoder-based
schemes. The autoencoder-based technique consistently outper-
forms the Gaussian-based technique in success rate and QoF
metrics. The reason is that the autoencoder can leverage the

correlation among the inter-kernel states; thus, it can detect the
subtle discrepancy of the states. However, the Gaussian-based
technique does not have correlation information among states.
Therefore, it can only detect each variable separately, which
may fail to detect anomalies if the corrupted data is still inside
the range of the normal data distribution.

We provide both methods in the ROSFI framework. The
Gaussian method serves as a practical and efficient solution for
anomaly detection. It requires minimal data collection to update
the standard deviation and mean values for each inter-kernel
state. This simplicity and real-time adaptability are especially
valuable in scenarios where immediate anomaly detection
is critical, as it minimizes computation and overhead. The
Autoencoder method, while more effective in terms of detection
accuracy, necessitates offline training, making it more suitable
for scenarios where detection accuracy is paramount and time
constraints permit offline model training. In essence, the choice
to utilize both methods stems from pragmatic consideration of
the diverse needs in UAV operations.

Comparison of environments. More dense environments
with a higher density of obstacles make it difficult to recover
from errors. For the Dense environment, a UAV has more
complex trajectories to follow and more dynamic actions in
response to the obstacles, making the range of the variable
distribution wider. The wider distribution increases the number
of false-negative detections. Thus, there is still a 20.1% gap
between autoencoder-based recovery results and golden for
the worst case. On the other hand, for the obstacle-free Farm
environment or Sparse, the autoencoder-based technique can
achieve a similar performance as the golden run.

B. Trajectory Analysis

To show the impact of faults and the effectiveness of our
detection and recovery schemes, we visualize UAV’s trajectories
in the Dense environment. We present the trajectories with
the autoencoder-based technique, while the Gaussian-based
technique has similar results when successful.

Fig. 13 shows the scenario in which a single-bit injection
in the PPC stage can lead to a flight detour and how the
detection and recovery scheme improves the flight. Without
fault injection (blue curve), the UAV takes off at the start
point and flies towards the endpoint in the beginning phase.
Then, when facing an obstacle, it stops at a safe distance and
re-plans a new trajectory that flies back slightly and bypasses
the obstacle.

When faults corrupt critical inter-kernel states, such as the
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Fig. 13: Trajectories of the golden run, with fault injection,
with both fault injection and error detection and recovery.

coordinate of a way-point, the path may be distorted. The UAV
may not stop until it faces an obstacle (orange curve), which
causes the UAV to fly back or re-plan its trajectory. The more
often the UAV re-plans and detours from its path, the longer it
takes to reach the destination, which increases the flight time
by 21.9% and 24.5% for Fig. 13a and Fig. 13b, respectively.
With the detection scheme, the corrupted way-point will be
abandoned once an anomaly is detected. The alarm raised by the
detection module triggers the stage recomputation. Therefore,
the UAV would follow a better trajectory (green curve) without
detour, which recovers the QoF metrics.

C. Anomaly Detection and Recovery

To evaluate error detection effectiveness in different PPC
stages, we experiment with the anomaly detection and recovery
scheme for certain compute stages.

Single-stage detection and recovery. We first experiment
with anomaly detection and recovery by only detecting a
single pipeline stage. As shown in Fig. 14, the Gaussian-based
technique recovers the flight time by 16.2%, 29.9%, and 34.7%
and the autoencoder-based technique recovers the flight time
by 20.1%, 59.3%, and 73.2% for perception, planning, and

(a) Gaussian-based anomaly detection and recovery (flight time).

(b) Autoencoder-based anomaly detection and recovery (flight time).

Fig. 14: Worst-case QoF metrics with different error detection
and recovery stages (results normalized to golden run).

TABLE V: Compute time overhead of detection and recovery.
Environment Factory Farm Sparse Dense

DET RECOV DET RECOV DET RECOV DET RECOV
Perception <0.0001% 0.9603% <0.0001% 1.0902% <0.0001% 0.9788% <0.0001% 1.1932%
Planning <0.0001% 1.0199% <0.0001% 0.7801% <0.0001% 0.9421% <0.0001% 1.0279%
Control 0.0008% <0.0001% 0.0007% <0.0001% 0.0009% <0.0001% 0.0012% <0.0001%

sum (Gaussian) 1.9810% 1.8710% 1.9218% 2.2223%
PPC 0.0042% <0.0001% 0.0037% <0.0001% 0.0047% <0.0001% 0.0062% <0.0001%

sum (AutoE) 0.0042% 0.0037% 0.0047% 0.0062%

control, respectively, along with the success rate improvement
and flight energy savings, in Factory environment. A similar
trend has been demonstrated in the other three environments.
Both techniques show that the flight time can be recovered the
most by detecting the faults that happened in the control stage.
The reasons are twofold. First, the planning and control stages
are more vulnerable to faults from the system perspective.
Second, any error propagated from previous stages has to pass
through the control stage before corrupting the flight command.
The evaluation of the individual stage lines up with the analysis
in §IV-B.

Multi-stage detection and recovery. To understand how
different stages affect anomaly detection and recovery, we apply
the scheme to multi-stages, namely the planning-and-control
(PC) stage and all PPC stages. The Gaussian method recovers
the flight time by 65.1%, 76.5%, and the autoencoder-based
recovers by 74.8%, 87.1% for PC and PPC, respectively, along
with the success rate increase and fight energy savings, in
Factory environment. For the Gaussian method, detecting the
PC stage significantly outperforms the single-stage detection
and recovery in all environments. For the autoencoder-based
technique, detecting PC stage achieves slightly better perfor-
mance than only detecting control in Factory, Farm, and Sparse
environment. However, in Dense environment, detecting the PC
stage with the autoencoder-based scheme greatly outperforms
detecting the control stage by 47.4%. Results indicate that a
UAV achieves similar or higher performance by monitoring
more stages, and the performance benefit is greater for complex
environments.

D. Compute Overhead

Software-level protection. We study the overhead of the pro-
posed software-level anomaly detection and recovery scheme
across the tested environments. The overhead is the total
detection and recomputation time for each mission. Tab. V
shows that the overall overhead of the autoencoder is much
smaller than the Gaussian-based technique. The overhead of
the Gaussian-based technique is dominated by the recovery of
perception and planning stages, which is around 289 ms for
each occupancy map generation and 83 ms for each trajectory
generation. On the other hand, even if the autoencoder-based
technique’s detection overhead is higher, the recovery overhead
is negligible as the control stage recomputation only takes
0.46 ms. As the scheme is operated at the software level with
negligible overhead, it is possible to deploy multiple anomaly
detection nodes to improve the robustness of detection nodes.

Hardware-level protection. To demonstrate the benefits
of our schemes over redundancy-based hardware protections,
we adopt a UAV visual performance model from [59] to
evaluate the performance overhead of microarchitecture-based
redundancy schemes (DMR and TMR) on UAV. Two types
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Fig. 15: Comparison of DMR, TMR, and the anomaly detection
and recovery schemes on ARM Cortex-A57.

i9-9940X Cortex-A57
Core Number 14 4
Core Freq. (GHz) 3.3 2
Power (Watt) 165 <15
Flight time (s) 115 322
Flight energy (kJ) 61.7 177.1

Fig. 16: Comparison of detection and recovery schemes.

of UAVs, AirSim UAV and DJI Spark (with the same specs
as [60]), are used as experimental platforms. Fig. 15 shows
that TMR incurs a flight time increase by 1.06× on AirSim
UAV and 1.91× on DJI compared to the anomaly detection
scheme. The rationale is that hardware redundancy brings
higher compute power with higher thermal design power and
weight, thus lowering flight velocity and increasing flight time.
Given the tight resource constraints of the UAV system, our
scheme demonstrates negligible performance overhead.

E. Computing Platform Comparison

To show the portability we conduct fault injection on different
platforms by introducing a single bit-flip at the inter-kernel
states as in §IV-C. Fig. 16 shows a similar error trend for both
platforms. On the TX2, the worst flight time increases 2.8×
since TX2 is an edge platform that has slower responses to
environmental changes. However, with the anomaly detection
ROS node continuously monitoring the anomaly of inter-kernel
states, the flight time is recovered by 79.3% and 88.0% with
Gaussian-based and autoencoder-based techniques.

VIII. Conclusion and Future Work
Safety is paramount in autonomous vehicles. We present

the first ROSFI fault analysis framework to enable system-
level resilience analysis and show that system-level analysis is
essential to capture system vulnerability compared to isolated,
single-kernel fault injection analysis which is the common
approach. Furthermore, we propose two anomaly detection
and recovery schemes and demonstrate that with less than
0.0062% compute overhead, the autoencoder-based scheme
can recover up to 100% failure cases in the tested scenario.
Being an instruction-level fault injection framework, ROSFI has
limitations. Nonetheless, we believe it moves the field of fault
and resilience analysis forward in a significant way, providing
a unique contribution of application-aware fault and resilience
analysis in the context of robotics. Future directions include
extending the fault model to consider micro-architecture level

errors that also manifest as bit flips in architecture states read
by an instruction and incorporating different AV pipelines.
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