
APPROXCALIPER: A PROGRAMMABLE FRAMEWORK FOR
APPLICATION-AWARE NEURAL NETWORK OPTIMIZATION

Yifan Zhao 1 * Hashim Sharif 1 * Peter Pao-Huang 1 Vatsin Ninad Shah 2 Arun Narenthiran Sivakumar 1

Mateus Valverde Gasparino 1 Abdulrahman Mahmoud 3 Nathan Zhao 4 Sarita Adve 1 Girish Chowdhary 1

Sasa Misailovic 1 Vikram Adve 1

ABSTRACT
To deploy compute-intensive neural networks on resource-constrained edge systems, developers use model
optimization techniques that reduce model size and computational cost. Existing optimization tools are application-
agnostic – they optimize model parameters solely in view of the neural network accuracy – and can thus miss
optimization opportunities. We propose ApproxCaliper, the first programmable framework for application-
aware neural network optimization. By incorporating application-specific goals, ApproxCaliper facilitates
more aggressive optimization of the neural networks compared to application-agnostic techniques. We perform
experiments on five different neural networks used in two real-world robotics systems: a commercial agriculture
robot and a simulation of an autonomous electric cart. Compared to Learning Rate Rewinding (LRR), a state-
of-the-art structured pruning tool used in an application agnostic setting, ApproxCaliper achieves 5.3× higher
speedup and 2.9× lower GPU resource utilization, and 36× and 6.1× additional model size reduction for the two
evaluated benchmarks, respectively.

1 INTRODUCTION
Many emerging edge applications combine multiple neural
network (NN) models (which extract actionable informa-
tion from sensor data such as RGB, LIDAR, audio, and
GPS) together with other computations to achieve end-to-
end goals. However, deep learning workloads are often
compute- and power-intensive, which makes it challeng-
ing to deploy these models on resource-constrained edge
compute devices with tight constraints on power, weight,
size and production costs (Pedersen et al., 2006; Kim et al.,
2010). An important opportunity, however, is that the ap-
plications exhibit a significant amount of application-level
error resilience: reducing an individual component’s accu-
racy is acceptable if it has minimal observable impact on
the end-to-end quality of the application.
Application-level error-resilience manifests in many differ-
ent domains that use NNs, including autonomous navigation
systems, augmented and virtual reality (AR/VR) stacks, and
real-time data analytics. For instance, in an autonomously
navigating robot, a reduction in the accuracy of the NN

*Equal contribution 1University of Illinois at Urbana-
Champaign 2Google 3Harvard University 4Tesla. Correspondence
to: Yifan Zhao <yifanz16@illinois.edu>. This work was con-
ducted while Vatsin Ninad Shah and Nathan Zhao were undergrad-
uate researchers at University of Illinois at Urbana-Champaign.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

perception component may not adversely affect the nav-
igation quality, due to the error resilience in the control
components. Similarly, we found that for a real-time data
analytics application (corn stem counting using object de-
tection), the final stem counts are minimally affected by
locationing errors in the object detection component.
Currently, application developers can reduce the costs of NN
models with various NN-specific optimization techniques
such as pruning, quantization, weight compression, and low-
rank factorization (Sainath et al., 2013; Han et al., 2016;
Anwar et al., 2017; Frankle & Carbin, 2019; Hubara et al.,
2017; Swaminathan et al., 2020; Ruan et al., 2021; Xu et al.,
2021; Venkataramani et al., 2019). These techniques opti-
mize a neural network with the goal to maintain the same
accuracy as the original model. They have proven effective
in many scenarios where the NN is the entire application.
However, using NN optimization techniques naı̈vely for
composite edge applications misses the rich opportunity to
take advantage of the application-level resilience. Instead,
it conservatively constrains the optimization levels to retain
the accuracy of the original network, even when the con-
straint is not required to satisfy the application’s end-to-end
QoS (Quality of Service) goal.
Our key insight is to incorporate the application-level error
resilience in the optimization process, which allows relaxing
the accuracy of NN components, yielding more aggressively
optimized models and less costly execution. Application-
aware optimization can provide several times more speedup

ApproxCaliper: A Programmable Framework for Application-aware Neural Network Optimization

and often more than an order of magnitude less memory
consumption compared to application-agnostic techniques.
These improvements make it possible to deploy compute-
intensive NN models on resource-constrained edge systems,
as we will demonstrate in this paper.

1.1 ApproxCaliper
We develop ApproxCaliper, the first application-aware neu-
ral network optimization framework. It is application-aware
in that it uses a developer-specified application-level QoS
goal for tuning. For instance, for an autonomous robot that
uses neural networks for visual perception, a developer can
specify an application-level QoS goal to autonomously nav-
igate without collisions for a given distance. ApproxCaliper
encodes this QoS goal as constraints under which it relaxes
NN accuracy with approximation techniques to gain higher
performance benefits.
Tuning the accuracy-vs-performance tradeoffs for neural
networks deployed as components in applications is both
complicated and time-consuming. Tuning is complicated
because it searches across many low-level system- and NN-
specific parameters with complex mutual interactions, and
their impacts vary across different applications. For instance,
for a control system that uses predictions from multiple NN
components, errors in one component may affect how much
error can be tolerated from other NNs, before quality of
control decisions becomes unacceptably low. Tuning is time-
consuming because the search space is often intractable,
and empirically evaluating each configuration to measure
application-level QoS can be expensive (e.g., running a
robot in a field). Thus we need to guide the search toward
the configurations that are likely to yield profitable tradeoffs.
To reduce the complexity and cost, our novel optimization
algorithm starts from the observation that the acceptability
of a configuration in the application-level tradeoff space
depends on the error levels in all NN components. We thus
reduce the problem of searching the end-to-end application’s
QoS space to searching the local spaces of NN errors mea-
sured by NN-specific error metrics. Our algorithm navigates
the NN error space with statistical error injection procedure
that varies the level of error in each NN component, and
uses the error injection results in the NN space to direct the
end-to-end QoS optimization.
We present a two-phase optimization approach with an on-
line (on-device) error calibration phase and an offline model
tuning phase. Our novel error calibration algorithm uses
statistical error injection to identify valid regions in the NN
error space (i.e., those that contain the configurations that
lead to acceptable application-level QoS) and separate them
from the invalid regions. We show that this technique can
guide the model selection and tuning phase (that makes
use of one or more off-the-shelf application-agnostic NN op-
timization techniques) towards configurations that maximize
the given objective while satisfying the error constraints.

ApproxCaliper can automatically tune multiple NN compo-
nents jointly to select an optimized model variant for each
component. It can also simultaneously tune for the choice
of model variant and value of NN-specific performance met-
rics, such as model frames per second (FPS) if given by
the developer, to optimize system-level goals such as re-
source utilization. ApproxCaliper provides an easy-to-use
programmable interface for the developer inputs, such as
QoS and error metrics.

1.2 Summary of Results
We evaluate two real-world autonomous cyber-physical sys-
tems, CropFollow and Polaris-GEM with five different NN
architectures used for visual perception tasks (detailed in
§2.2 and §2.3). For both systems, ApproxCaliper discovers
significant room for relaxing NN accuracy while maintain-
ing application-level QoS. For CropFollow, ApproxCaliper
co-tunes two different NN models in the application, and
achieves 5.3× higher speedup and 36× greater model size
reduction compared to Learning Rate Rewinding (LRR),
an application-agnostic state-of-the-art structured pruning
algorithm. For Polaris-GEM, ApproxCaliper co-tunes for
model FPS and pruned model variants (two main factors
that affect the QoS of this application), and achieves 2.9×
lower GPU resource utilization and 6.1× greater model size
reduction compared to LRR.
For CropFollow, these performance improvements allowed
us to run the full system on a single $45 Raspberry Pi4. This
compares favorably to the $129 Jetson Nano (2023 prices),
the cheapest device to deliver necessary performance with
application-agnostic pruning (LRR). Our work has led Earth-
sense, CropFollow’s manufacturer (Earthsense, 2020), to
consider lower cost alternatives for computing hardware.

1.3 Contributions
• We propose ApproxCaliper, the first programmable frame-

work that optimizes neural network approximations in an
application-aware manner. It captures how errors and
performance of NN components in an application interact
and affect the application-level QoS.

• We present a novel two-phase neural network model opti-
mization strategy, with an error calibration phase and a
model optimization and selection phase, which achieves
higher end-to-end performance improvements compared
to traditional empirical autotuning.

• Our evaluation on the end-to-end software stacks of two
real-world cyber-physical systems shows that Approx-
Caliper provides significantly higher improvements com-
pared to application-agnostic tuning approaches.

ApproxCaliper is available at https://github.com/
uiuc-arc/approxcaliper.

https://github.com/uiuc-arc/approxcaliper
https://github.com/uiuc-arc/approxcaliper

ApproxCaliper: A Programmable Framework for Application-aware Neural Network Optimization

2 BACKGROUND AND MOTIVATION
We consider an application that includes one or more neural
networks, and must achieve a design goal captured by a
specified quality-of-service (QoS) metric. The goal of our
work is to enable and simplify the use of aggressive opti-
mizations that relax component-level semantics, such as NN
inference accuracy, to the maximum extent possible while
ensuring the QoS goal is met. We first define terminology
used throughout the paper (§2.1), and then describe the two
evaluated cyber-physical applications (§2.2 and §2.3).

2.1 Preliminaries and Terminology
Configuration is an assignment of a possibly optimized
model variant (e.g., a pruned neural network with specific
pruning fractions) to each NN component in the application,
and (optionally) NN performance parameters such as the
FPS (frames per second) at which the NN processes inputs
(e.g., images).
Application-level QoS is an application-specific metric de-
fined by a real-valued function for a specified configuration
(the “QoS Evaluator”), along with a lower-bound value for
the desired application quality (the “QoS Target”). This
function should quantify how well the application delivers
on its desired goals. For example, for an autonomous mobile
robot, a relevant QoS metric for navigation quality is the
time the robot travels before requiring human intervention,
e.g., due to a collision.
Valid and Invalid Configurations. A configuration is valid
if it meets the QoS target (QoS ≥ QoSTarget), and is invalid
otherwise (QoS < QoSTarget).
Autotuning is a design space exploration technique that uses
heuristic techniques to find configurations that maximize
a given objective function, while satisfying user-specified
constraints. Since autotuning is a heuristic search performed
over (usually) intractably large search spaces, it may not
discover globally optimal configurations.

2.2 CropFollow Autonomous Navigation System
We evaluate a state-of-the-art commercial agriculture robot
called TerraSentia, obtained from EarthSense (Earthsense,
2020), used by clients for high-throughput phenotyping and
a variety of other agriculture tasks. The robot is equipped
with an autonomous vision-guided navigation system named
CropFollow (Sivakumar et al., 2021) used for row-following
navigation through fields of crops.
CropFollow’s goal is to navigate the robot through the center
line of a (possibly curved) crop row. It contains a number of
components that collaborate to keep the robot on its intended
path, as shown in Figure 1:

• Heading / distance prediction NNs. 2 ResNet-18 NNs
take 320 × 240 RGB images as input and estimate the
heading angle θ and distance-to-edge d of the robot. θ is
the angle of the robot’s direction relative to adjacent crop
rows. d ∈ [0, 1] is the ratio between the robot’s distance

Distance
Pred. CNN

EKF

Front Camera Image

Heading
Pred. CNN

MPC

Control
Commands

IMU

Figure 1: CropFollow navigation system workflow.

Lane Post-
processing

Lane Det.
CNN

Stanley
controller

Control
Commands

Front Camera Image

Sim. IMU

Figure 2: Polaris-GEM vehicle simulator workflow.

to the left crop row and the total row width.

• Extended Kalman Filter (EKF). EKF fuses (θ, d) predic-
tions with measurements of linear and angular velocities
and accelerations from an Inertial Motion Unit (IMU) to
refine these predictions.

• Model Predictive Controller (MPC). MPC uses refined
pose estimations from EKF to compute the angular veloc-
ity commands to be applied over the next few decision
intervals, to keep the robot travelling on its intended path.

2.3 Polaris-GEM Vehicle Simulator
Polaris-GEM is a Gazebo-based simulation of an au-
tonomous lane-following, commercially-sold electric cart,
Polaris GEM e2 (Salfer-Hobbs & Jensen, 2020). The origi-
nal simulator used GPS-based perception, but we modified
it for vision-based perception using LaneNet (Neven et al.,
2018), a state-of-the-art lane detection network. Figure 2
shows the components of Polaris-GEM, which include:

• Lane Detection Network. A LaneNet (Neven et al., 2018)
with a VGG-16 backbone takes a 512× 256 RGB image
(from Gazebo-simulated front camera) and produces 2
outputs: a Boolean mask B : 512×256 and an embedding
tensor E : 4× 512× 256. B distinguishes lanes from the
background; E distinguishes the lanes from each other.

• Lane Post-processing. The post-processing module com-
bines the masks (B,E) with a clustering algorithm and
finds each lane as a cluster of pixels. It then fits a polyno-
mial curve through the pixels of each lane, and eventually
converts these curve equations into heading and distance
estimates (θ, d) (similar to CropFollow).

• Stanley Controller. A Stanley controller (Thrun et al.,
2006) uses (θ, d) estimates and current velocity (from
Gazebo-simulated IMU) to compute a steering angle and
guide the vehicle back to the center.

ApproxCaliper: A Programmable Framework for Application-aware Neural Network Optimization

Application
perf. evaluator

Optimization
Scheme

Error
CalibrationApplication

QoS evaluator
& target Error

Constraints

Model
Optimization

ApproxCaliper Framework

Application NNs

Optimized
NNs

NN-specific
metrics

Error Distribution

Figure 3: ApproxCaliper High-level Workflow

3 APPROXCALIPER FRAMEWORK
Figure 3 shows the workflow of the ApproxCaliper frame-
work. At a high-level ApproxCaliper takes as input (1) NN
models to optimize, (2) NN-specific metrics that are used
to quantify the output error of the NN models (used for
error calibration analysis), (3) a developer-provided QoS
evaluator and QoS target, and (4) a developer-provided ap-
plication performance evaluator, and uses these to perform
application-aware optimizations on the NN models. To
reduce the cost of tuning and improve the quality of con-
figurations, ApproxCaliper performs optimization in two
phases: (1) An error calibration phase (§3.2) that evaluates
empirically how the end-to-end application QoS is affected
by accuracy degradation of the NN components in the appli-
cation pipeline, and (2) A model tuning and selection phase
(§3.3) that optimizes the NNs based on the application’s
error constraints computed by the calibration phase.
First, we discuss the high-level intuition of our approach,
and next, the algorithmic details of the error calibration and
model tuning phases in ApproxCaliper. In §3.4, we dis-
cuss how developers can use the ApproxCaliper interface to
optimize neural networks in an application-specific manner.

3.1 Intuition for our Two-phase Tuning Approach.
Motivation. Empirical autotuning is computationally ex-
pensive because (1) it usually requires many tuning itera-
tions to achieve good results, and (2) each empirical eval-
uation can be expensive; for instance, for CropFollow, em-
pirical evaluation can be expensive in terms of both time
and human resources because the TerraSentia robot needs a
human observer for potential manual interventions.
ApproxCaliper’s two-phase tuning approach achieves higher
speedups and model footprint improvements in the same
tuning time budget as traditional empirical tuning. System-
atically quantifying the error constraints before the tuning
phase allows for filtering invalid configurations (unaccept-
ably low QoS), and helps direct the search towards configu-
rations that more likely has high speedups.
Goal of the Error Calibration Phase. The purpose of er-
ror calibration is to learn the extent to which the accuracy
of NN components can be reduced without violating end-
to-end application-level QoS targets. This is achieved by
statistical error injection into NN outputs and empirical eval-
uation of the application QoS for a limited number of times.
The injected errors are quantified using one or more tradi-

tional error metrics per NN, such as accuracy, precision, or
any custom function. These error metrics Mj , 1 ≤ j ≤ N
define a bounded N -dimensional error constraint space.
Figure 4 shows an example error constraint space with two
error metrics M1 and M2. The error constraint space cap-
tures how simultaneous changes in the error metrics affects
the end-to-end QoS. Error calibration partitions this space
into three disjoint regions: valid (QoS ≥ QoSTarget, shown
in green) invalid (QoS < QoSTarget, shown in red) and
unvisited (unknown QoS, shown in white).

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8
M1

M2

1

3

2

Figure 4: Example shows how the error calibration algorithm
partitions the 2-dimensional error space into valid (green) and
invalid (red) configuration regions. M1 and M2 are error metrics.
Valid regions marked number 1, 2, 3 are created in the first 3
iterations, respectively. The green crosses show the MVP (maximal
valid points) and red crosses show the MIP (minimal invalid points).
The black dots show configurations searched on the boundary of
the valid and unvisited regions.

Goal of the Model Optimization and Autotuning Phase.
The model autotuner uses heuristic search techniques to
navigate the configuration space and filters away (1) in-
valid region (red region) configurations, and (2) valid region
(green region) configurations with low error metric values.
Configurations with lower error are not desirable since a
lower error means less opportunity for optimization. We
refer to valid configurations with high error metric values
as high potential since a higher metric value indicates a
higher error slack, and hence more optimization opportunity.
High potential configurations are likely found close to the
boundary of the valid and unvisited region, as this area in-
cludes the highest error values but still produces valid QoS.
In Figure 4, the black dots in the green and white regions
show the configurations searched in the model tuning phase.
The unvisited (white) region is included in the search since
it potentially includes valid configurations (has unknown
QoS). There are no visited configurations on the bottom left
of Figure 4, since points with low error metric values are
not high potential configurations.

3.2 Error Calibration Phase
The error calibration phase uses artificial error injection to
add varying levels of errors to NN outputs, and measures
the impact on the end-to-end application-level quality. Next,

ApproxCaliper: A Programmable Framework for Application-aware Neural Network Optimization

we describe the key inputs to the error calibration phase,
the error calibration algorithm, and our approach to error
injection in NN outputs.
Developer Input #1: Baseline Neural Networks. Devel-
opers specify one pretrained NN model per NN component
to use for error injection. These are the baseline models with
no approximation. It is preferred that developers specify
models with high accuracy since it gives the highest margin
for error injection.
Developer Input #2: Neural Network Metrics. The Ap-
proxCaliper interface provides developers with a flexible
way to specify task-specific NN error metrics, which is
important since different NN tasks use different metrics.
Developers can use a predefined error metric or provide a
custom function ErrorMetric(Y,G), where Y is the output
of the NN model after error injection and G is the ground
truth. Developers can also specify a performance metric
such as DNN throughput, and ApproxCaliper can analyze
the combined impact of NN compute performance (e.g.,
FPS) and prediction error (e.g., accuracy) on end-to-end
QoS. The interface allows specifying multiple metrics (e.g.,
precision and recall) per NN that capture different aspects of
the error. For each metric, users also need to provide lower
and upper bound values as the range for error injection.
The error calibration algorithm assumes that all the metrics
are monotonic with the same directionality, i.e., a higher
metric value is always more desirable than a lower value.
This monotonicity assumption is satisfied by most common
metrics such as classification accuracy, F1 score, PSNR
(peak signal-to-noise ratio), etc. If a metric m is monotonic
but in the opposite direction, one can instead use −m.
Developer Input #3: End-to-end QoS Evaluator. Devel-
opers provide the QoS evaluator and the QoS target via the
ApproxCaliper interface. The error calibration algorithm
uses this QoS evaluator to measure the impact of NN errors
on the end-to-end QoS. This function should initialize the
application, run the application for some time / iterations,
and return the end-to-end QoS.
Output. The output is an N -dimensional error constraint
space that captures the effect of increasing NN error on the
application QoS. The error constraint space is a space of the
N metrics (Input #2). The lower and upper bounds of each
metric collectively define two N -dimensional points Mlb =
(Mlb,1, . . . ,Mlb,N) and Mub = (Mub,1, . . . ,Mub,N) and
an N -dimensional box between them that forms the over-
all search space. We refer to a single or an union of more
N -dimensional boxes as a region. The algorithm partitions
the search space into valid (green) and invalid (red) region,
effectively finding the boundary between these two regions.
Figure 4 shows an example of a 2-dimensional error con-
straint space where Mlb = (0, 0) and Mub = (8, 8).

Algorithm 1: Error Calibration Algorithm.
1 Inputs:
2 • baselineNNs: pretrained NNs, one per NN component
3 • qosEvaluator: function that evaluates app-level QoS
4 • qosTarget: QoS target to satisfy
5 • lowerBound, upperBound: thresholds for metrics
6 • errorDistrib: error distribution for sampling errors
7 • maxDiagEvals: maximum evaluations per diagonal
8 • totalEvals: total number of evaluations
9 Output: validRegion, invalidRegion, unvisitedRegion

10 Function errorCalibrate
11 fullRectangle = Rectangle(lowerBound, upperBound);
12 rectQueue = PriorityQueue([fullRectangle]);
13 nEvals = 0;
14 while not rectQueue.empty() and nEvals < totalEvals do
15 rectangle = rectQueue.pop();
16 diag = rectangle.getDiagonal();
17 for rEvals = 0 to maxDiagEvals do
18 if nEvals ≥ totalEvals then break;
19 errorInjectedNNs = errorInject(baselineNNs,

errorDistrib, diag.midPoint);
20 qos = qosEvaluator(errorInjectedNNs);
21 if qos ≥ qosTarget then
22 diag = Diagonal(diag.midPoint, diag.MIP);
23 diag.MVP = diag.midPoint;
24 else
25 diag = Diagonal(diag.MVP, diag.midPoint);
26 diag.MIP = diag.midPoint;
27 nEvals += 1;
28 validRegion ∪= DominatedRect(diag.MVP);
29 invalidRegion ∪= DominatedRect(diag.MIP);
30 rectQueue.push(rectangle.getSubRectsToVisit());
31 unvisitedRegion = fullRectangle − validRegion −

invalidRegion;
32 return validRegion, invalidRegion, unvisitedRegion;

3.2.1 Error Calibration Algorithm
Algorithm 1 shows the error calibration algorithm. The core
idea is to recursively divide the search space into smaller
rectangles and search for boundary points (representing
configurations) on the diagonal of each rectangle. The algo-
rithm exploits domination relation in the space to efficiently
infer validity of rectangles. If a point P is evaluated as valid,
the algorithm infers the rectangle with lower or equal error
than P in all metrics RL;P = {Q | ∀i. Qi ≤ Pi} as
valid. We say point P dominates all points Q ∈ RL;P , and
P is the highest point of RL;P . Conversely, if P is invalid,
the rectangle RU ;P with higher or equal error than P is
invalid, P is dominated by all points Q ∈ RU ;P , and P is
the lowest point of RU ;P . By this definition, each rectangle
has a unique lowest point and a unique highest point.
For each rectangle, we perform a binary search (Lines 16-
27) on its diagonal. For each point to evaluate, the error
injection procedure adds error into NNs’ outputs (Line 19);
see §3.2.2 for details on error injection. The algorithm tra-
verses this diagonal to find a pair of boundary points: a max-
imal valid point (MVP) and a minimal invalid point (MIP).
MVP is the highest point on the diagonal that evaluates as
valid and MIP is the lowest invalid point. The rectangle

ApproxCaliper: A Programmable Framework for Application-aware Neural Network Optimization

dominated by MVP is added into the valid region (Line
28), and the rectangle that dominates MIP is added into
the invalid region (Line 29). Then the algorithm computes
rectangles to visit next based on the coordinates of MVP
and MIP (Line 30). The gap between MVP and MIP also
creates an unvisited rectangle (usually small). The volume
of this rectangle is controlled by the number of evaluations
done per diagonal (maxDiagEvals); a higher number of
evaluations per diagonal increases analysis time but reduces
the size of the unvisited rectangle. The algorithm finishes
when the queue of rectangles is empty or the number of QoS
evaluations reaches totalEvals.
Example. Figure 4 illustrates three outer loop iterations
of the algorithm. Assuming two error metrics, M1 and
M2, the first iteration traverses the diagonal between (0, 0)
(lowest metric values) and (8, 8) (highest metric values). It
first evaluates the midpoint (4, 4) (shown as a black cross).
Given (4, 4) is found as a valid point a new higher midpoint
(6, 6) is evaluated. (6, 6) is found as an invalid configura-
tion and hence the search proceeds to evaluate a new mid-
point (5, 5). Assuming three evaluations on the diagonal
(maxDiagEvals = 3), (5, 5) is found to be the diagonal’s
MVP and (6, 6) is found as the MIP, which are used to cre-
ate the dominating rectangular green (valid) region and red
(invalid) region, respectively. Subsequent iterations create
further green and red rectangles – green rectangles labelled
2 and 3 are created in 2nd and 3rd iteration, respectively.

3.2.2 Error Injection in NN outputs
The error injection algorithm injects error to NNs’ outputs as
Y = X + ε, where X is the output of the non-approximate
NN, Y is the output after error injection, and ε ∼ D(p) is
a sample from an error distribution with parameters p. For
given error values (a point x chosen by the error calibration
algorithm), the error injection algorithm searches for the
distribution parameter values that produce an output error
close to the given x. This step does not require expensive
empirical evaluation and has negligible overhead.
Selecting an Error Distribution. ApproxCaliper automat-
ically selects a distribution that best mimics the errors that
occur with an approximation technique (e.g., with low-rank
factorization). Given a pretrained NN, a calibration dataset,
and approximation techniques, ApproxCaliper generates
approximated NN variants and evaluates them on the cali-
bration dataset to measure the output errors. ApproxCaliper
then finds a fittest one from a set of predefined parametric
distributions, by computing the Bayesian information cri-
terion (BIC) for each distribution on the output errors and
selecting the one with the lowest BIC. For floating-point
outputs, ApproxCaliper chooses from Gaussian, log-normal,
exponential, and Student-T distribution; for integer outputs,
it evaluates binomial, Poisson, and logarithmic distributions.
Users can easily add more error distributions by implement-
ing a sampling function usually with a few lines of code.

3.3 Model Tuning and Optimization
In the model tuning phase, ApproxCaliper searches for con-
figurations that minimize the given performance objective
while satisfying the application-level QoS target. A configu-
ration contains choices of optimized NN variants generated
by approximation techniques (described later). It may also
include NN-specific performance metrics (e.g., model FPS);
this allows ApproxCaliper to co-tune for NN performance
and error. Each configuration corresponds to a point (black
dots in Figure 4) in the error constraint space.
To explore the search space more efficiently, ApproxCaliper
uses the error constraint space to skip empirical evalua-
tions for (1) configurations in the invalid region, and (2)
low-potential configurations in the valid region. We now
describe how the autotuning search decides if a configu-
ration lies within a low-potential valid region. The error
calibration phase yields a valid region as a union of rect-
angles. each with one vertex at (0, 0). Moving the MVP
vertex of each rectangle by k% towards (0, 0) creates a
smaller rectangle, which we treat as a low-potential valid re-
gion. Here, k% is a user-configurable hyperparameter. For
example, in a rectangle between (0, 0) and (1, 1), the rect-
angle between (0, 0) and (0.95, 0.95) is low-potential when
k% = 5%. ApproxCaliper skips navigating configurations
in these low-potential rectangle regions.
Figure 4 shows how ApproxCaliper only searches for high
potential configurations in these regions. This helps steer
the search away from both low-potential (too conservative)
and known invalid configurations. Our approach ensures
that costly empirical evaluations are only spent on configu-
rations that are likely to provide high improvements.
NN Approximation Techniques in ApproxCaliper. Ap-
proxCaliper currently supports two existing approxima-
tion techniques (which can be applied in combination):
(1) structured pruning based on Learning Rate Rewinding
(LRR) (Renda et al., 2020) and (2) low-rank factorization
(or LR factorization) based on (Tai et al., 2016). Developers
can also incorporate new approximation techniques (e.g.,
perforated convolutions (Figurnov et al., 2015)) with the
ApproxCaliper interface.
Structured pruning works iteratively: in each iteration, it
removes a fraction of filters with the lowest L1 norm from
each convolution layer, and retrains the model to recover
some of the lost accuracy. Each iteration produces smaller
and more efficient models with (usually) lower accuracy,
creating a tradeoff space of models to choose from.
LR factorization decomposes each (convolution and ma-
trix multiply) weight tensor into 2 lower-rank tensors.
For instance, a 2D convolution layer with weights of
shape (Cout, Cin, Hk,Wk) can be decomposed into 2 con-
volution layers with weights of shape (R,Cin, 1,Wk) and
(Cout, R,Hk, 1) where the free parameter R controls the
rank of the decomposition. A lower R means more ap-

ApproxCaliper: A Programmable Framework for Application-aware Neural Network Optimization

import approx_caliper as ac
Load NN models; supports Pytorch and ONNX models
heading_nn, distance_nn = ac.load_model("resnet18_h.onnx"), ac.load_model("resnet18_d.onnx")
nns = [heading_nn, distance_nn]
trainset = ac.load_dataset("cropfollow_data/", "cropfollow_labels.json")
Define metrics for measuring the error of each NN’s output; to be used in error calibration.
metrics = [ac.ErrorMetric(heading_nn, ac.l1_error), ac.ErrorMetric(distance_nn, ac.l1_error)]
Use predefined Structured Pruning method to compress the NNs
Prune 20 levels with each level pruning 20% of the weights
structured_pruner = ac.nn_approx.StructuredPruner(n_steps=20, prune_fraction=0.2)
Fits the errors of the optimization technique to an error distribution -- e.g., Gaussian, Bernoulli
error_dist = ac.find_error_distribution(structured_pruner, nns, trainset)
User provides method to evaluate end-to-end application quality and application performance
qos_eval, perf_eval = CropFollowQoSEvaluator(), CropFollowPerfEvaluator()
error_calibrate interface invokes the Error Calibration phase -- computes error constraints
constraints = ac.error_calibrate(

nns, error_model, metrics, qos_eval, qos_target={"collision": 0}, iters=25)
optimize input NNs using the given optimization scheme (structured pruner)
optimized_nns = ac.optimize(structured_pruner, constraints, nns, trainset, qos_eval, perf_eval)

Figure 5: Example of using the ApproxCaliper interface with the NN components in the CropFollow autonomous navigation stack.

proximation, less computation, and less accuracy. Similar
to pruning, we apply LR factorization iteratively (not pro-
posed in the original work (Tai et al., 2016)), where ranks of
weight tensors are reduced in each iteration. Additionally, in
the first iteration, each layer is decomposed into two layers.
In further iterations, only the ranks of weight tensors are
reduced, and no more layer splitting is performed. We make
this choice to avoid an explosion of layers, which can hurt
compute performance.
Autotuning to Search Profitable Configurations. The NN
variants produced by the approximation techniques and NN-
specific performance metrics (if any) together create a large
search space of configurations on which an exhaustive ap-
proach is intractable. To make the search feasible, we use
OpenTuner (Ansel et al., 2014), a library for building custom
autotuners. In addition to the QoS evaluator, autotuning also
uses the application performance evaluator that developer
provided to ApproxCaliper.

3.4 ApproxCaliper Programmable Interface
ApproxCaliper is developed as a Python library with an
easy-to-use API. Figure 5 presents an example of how the
ApproxCaliper interface is used to optimize the heading
and distance prediction NNs in the CropFollow autonomous
navigation stack. The key interface functions in the example
are described and explained within the comments.
As Figure 5 shows, using ApproxCaliper’s interface to op-
timize a new application requires only a few lines of code.
The application QoS evaluation and performance evaluator
are the only functions that developers need to implement.
These evaluators run the application multiple times to com-
pute the QoS and measure the performance. Since appli-
cation test suites usually include such scripts, it requires
minimal additional effort in most cases. Further, developers
need to specify the number of runs used in error calibration

phase and model optimization phase. This is a common
practice in existing autotuning works, as automatic stopping
criteria (e.g. stop on convergence) are rarely satisfied.

4 EXPERIMENTAL METHODOLOGY
Optimization Goals and Constraints. We apply Approx-
Caliper on CropFollow to optimize its 2 NN models simul-
taneously, maximizing the application-level FPS without
introducing collisions. The QoS target is that the robot
should have 0 collisions with the row boundaries in a 100m
run in corn fields at the Illinois Autonomous Farm. The
QoS evaluator prompts for the number of total collisions,
which a human observer observes and manually inputs after
each run, since the robot has no automatic collision detec-
tion mechanism. The optimization goal FPS is a proxy for
latency, and is relevant for autonomous navigation systems
because feedback control systems have minimal FPS re-
quirements (Falanga et al., 2019; Anwar & Raychowdhury,
2020) to function correctly. FPS improvements enable exe-
cution on low-end compute devices which would otherwise
not provide minimal FPS.
Similarly, we apply ApproxCaliper on Polaris-GEM to
jointly optimize model FPS and model approximation. Ap-
proxCaliper searches for an optimized (e.g., pruned) NN
model and the FPS that the NN component runs at, to mini-
mize GPU utilization without introducing lane departures.
Running the model at a lower FPS reduces GPU utilization
as the process sleeps between frames, freeing up GPU cy-
cles. The QoS target is the robot should make 0 departures
from the current lane in a 506 meter run in simulation. The
optimization goal, GPU utilization, is a known proxy (Fan
et al., 2007) for power usage; we don’t report power num-
bers since there is no easy way to precisely measure power
on the target GPU, an Nvidia Quadro P5000.

ApproxCaliper: A Programmable Framework for Application-aware Neural Network Optimization

Approximation Techniques Setup. We implemented struc-
tured pruning and LR factorization based on the original
papers – (Renda et al., 2020) for pruning and (Tai et al.,
2016) for LR factorization. For both techniques, we set up
ApproxCaliper to use a fixed number of iterations each re-
moving an additional 20% filters or ranks. We apply pruning
with 20 iterations for NNs in CropFollow and 12 iterations
for LaneNet (as the lane detection quality decreases sig-
nificantly after that point). We apply LR factorization to
LaneNet with also 12 iterations. We name as a prune level
the output model of each iteration and label it from 1 to 20
(or 12) inclusive, and 0 is the unpruned baseline.
Error Calibration and Model Tuning Setup. There are 63
candidates for each of the two NN components in CropFol-
low, creating a total of 63×63 = 3969 combinations. Brute
force search is infeasible since each empirical field evalu-
ation takes 4-5 minutes. The same holds true for Polaris-
GEM which has 2730 configurations and each run takes 5-6
minutes. While we had performed more than 700 hours of
field experiments to refine our algorithms, we limit the tun-
ing to 50 navigation runs (∼5 hours). Of those, we use 20
runs in error calibration phase and 30 in model optimization
phase. We compare the result against 50 unguided (without
ApproxCaliper) autotuning runs using Opentuner. For the
k% parameter that decides the size of the high-potential
valid region we use 5%.
Tuning Space and Tuning Time Budgets. As shown
above, there are 3969 configurations for CropFollow; for
Polaris-GEM, the autotuner searches over 26 model can-
didates for LaneNet and 105 FPS values (chosen between
0 to 10.5 at 0.1 intervals), with total 2730 configurations.
The LaneNet FPS is limited by the clustering algorithm (see
§2.3) which runs at a max of 10.5 FPS. Like CropFollow,
each evaluation is expensive since it involves a 506-meter
long simulator navigation run that consumes 5-6 minutes,
and we maintain an ∼5 hour tuning time budget for 50 runs.
The fractions of configurations searched in unvisited and
valid regions are set to 75% and 25%, respectively. For
the valid region, 5% of the area closest to the boundary is
included in the search (k% = 5%).
Neural Network Specific Error Metrics. For both NNs
in CropFollow, we use standard deviation of error as the
error metric in error calibration, because pruned models
mostly have zero-centered errors (confirmed by zero-mean
Gaussian distribution that ApproxCaliper found). In Polaris-
GEM, the quality of lane detection is measured by lane
detection accuracy, a quantity between 0 (worst) and 1
(best): Acc =

∑
image

Cim

Sim
, where Cim is the number of

correctly detected lanes in an image, and Sim the number
of lanes in ground truth. A lane is correctly detected if the
average distance between its detected points and the ground-
truth points is less than 20 pixels (the same threshold used
in the TuSimple challenge (Zhou, 2018)).

Application-agnostic Baseline. As baselines for compar-
ison, we apply pruning using LRR (Renda et al., 2020) or
LR factorization using the technique in (Tai et al., 2016)
to all the candidate neural network architectures with the
constraint to retain the same accuracy as the original model,
and pick the most efficient pruned variant from this set
as our baseline. This represents an intelligent use of to-
day’s state-of-the-art model optimization approaches, which
accounts for manual selection of neural network architec-
ture and optimized variants, but does not exploit applica-
tion resilience to increased inference error. For instance,
for Polaris-GEM, LaneNet-DarkNet prune level 1 (20%
weights pruned) is selected as the baseline since it is the
most efficient pruned model that retains the original model
accuracy of the unpruned LaneNet-DarkNet model, and is
more compute-efficient than any of the LaneNet-VGG16
optimized model variants with equivalent accuracy.
Model Architectures and Training. For CropFollow, we
evaluate three NN architectures for both heading and dis-
tance prediction: ResNet-18 (He et al., 2016) (default),
SqueezeNet-v1.1 (Iandola et al., 2016), and DarkNet (Red-
mon & Farhadi, 2018). We use NNs pretrained on Ima-
geNet (Deng et al., 2009) and fine-tune with 25K corn row
images. For Polaris-GEM, we evaluate LaneNet with two
backbones: VGG-16 (Simonyan & Zisserman, 2014) (de-
fault) and DarkNet (Redmon & Farhadi, 2018). We fine-tune
pretrained backbones on the TuSimple dataset (Zhou, 2018)
with 3600+ images. We use a 4:1 split between training and
validation sets for both datasets.
Error Distributions. ApproxCaliper finds zero-mean Gaus-
sian N (0, σ2) as the closest error distribution for the NNs in
CropFollow (using the ac.find err distribution
routine – §3.4). The mean is 0 since the errors are mostly
zero-centered; the variance σ is a parametric value that is
varied in error injection. In Polaris-GEM, ApproxCaliper
finds Bernoulli distribution B(p) for the Boolean mask and
zero-mean Gaussian distribution N (0, σ2) for the embed-
ding tensor (see §2.3 for these outputs).

5 EVALUATION
In our experiments, we consider the following questions:
RQ1: Does ApproxCaliper’s application-aware pruning
provide more benefits than today’s practice of application
agnostic pruning (retaining original model accuracy)?
RQ2: Does the ApproxCaliper error calibration framework
identify opportunities for relaxing NN accuracy require-
ments without impacting the end-to-end QoS?
RQ3: Do the error calibration results guide ApproxCaliper
to better tune the NN components than “unguided tuning”?
Unguided tuning is in-field autotuning without considering
the error constraint space computed by the calibration phase,
i.e., this requires exploring configurations anywhere within
the search space.

ApproxCaliper: A Programmable Framework for Application-aware Neural Network Optimization

0 10 20 30 40 50
Number of Field Evaluations

0

50

100

150

Be
st

 F
PS

App-agnostic FPS

unguided
guided

Figure 6: CropFollow tuning result. Graph shows how the perfor-
mance in FPS (higher is better) of the best configuration evolves
with increasing field evaluations. ApproxCaliper guided and un-
guided tuning is compared with LRR app-agnostic baseline.

0 10 20 30 40 50
Number of Simulator Evaluations

0

2

4

6

8

10

Lo
we

st
 U

til
. R

at
e

(%
)

App-agnostic Util.
unguided
guided

Figure 7: Polaris-GEM tuning result. Graph shows how the GPU
utilization rate (lower is better) of the best configuration evolves
with increasing simulator evaluations. ApproxCaliper guided and
unguided tuning is compared with LRR app-agnostic baseline.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Heading StdDev (degree)

0.0

0.1

0.2

0.3

Di
st

an
ce

 S
td

De
v

Figure 8: Error constraint space for CropFollow. It captures the
interaction of errors in the heading model (x-axis) and the distance
model (y-axis). Green region is the valid QoS region, red region is
the invalid QoS region, and white regions are unvisited. The black
dots on the figure show field evaluations.

0 2 4 6 8 10
FPS

0.0

0.2

0.4

0.6

0.8

1.0

La
ne

 D
et

. A
cc

ur
ac

y
Figure 9: Error constraint space for Polaris-GEM. It captures the
interaction of FPS (x-axis) and the errors in the LaneNet model
(x-axis). Green region is the valid QoS region, red region is the
invalid QoS region, and white regions are unvisited. The black dots
on the figure show simulator evaluations.

RQ4: Do the valid and invalid regions obtained by cali-
bration correspond to the real-world separation between
acceptable and unacceptable configurations?
RQ5: Does ApproxCaliper’s application-aware optimiza-
tion provide performance improvements with other approxi-
mations such as LR factorization?

5.1 Application-aware vs Application-agnostic Pruning
To answer RQ1, we compare the best pruning configura-
tions for CropFollow and Polaris-GEM, selected by 3 strate-
gies, all using LRR: (1) guided tuning with ApproxCaliper,
(2) unguided autotuning with ApproxCaliper, and (3) the
application-agnostic pruning baseline. We focus on LRR
(i.e., structured pruning) here because it gave dominant re-
sults over LR factorization.
For CropFollow, Figure 6 shows how the performance (FPS)
of the best configuration (found until that point) evolves with
the increasing number of tuning iterations. Application-
agnostic pruning using LRR gives a flat line (31.8 FPS)
since this approach simply uses the best performing pruned
model for heading and distance predictions, and does not
involve any further tuning in the field. Application-aware
pruning using ApproxCaliper provides significantly higher
FPS: unguided tuning provides an FPS of 105.8 (i.e., 3.3×
faster than application-agnostic pruning) and guided tuning
provides 184.9 FPS (i.e., 5.8× faster). These are dramatic
speedups obtained with the same optimization techniques,

i.e., purely by accounting for application-level quality goals.
Similarly, for Polaris-GEM, Figure 7 shows the GPU utiliza-
tion rate of configurations, which decreases over the course
of tuning. Using application-agnostic pruning on LaneNet
achieves a GPU utilization of 7.77%. Unguided and guided
application-aware pruning using ApproxCaliper reduces the
utilization to 2.92% (2.66× reduction) and 2.67% (2.91×
reduction) respectively.

5.2 Error Calibration using ApproxCaliper
To answer RQ2, we apply ApproxCaliper’s error calibration
framework to identify how much error can be introduced to
the NN predictions without affecting the navigation quality
of CropFollow and Polaris-GEM. These experiments ex-
plain how ApproxCaliper achieves substantial overall gains.
Error Calibration Results on CropFollow. Figure 8 shows
the error constraint space for CropFollow. Each of the 20
error calibration field evaluations are shown as black dots.
Our key findings are:

• The heading model error in isolation (no errors in dis-
tance model) can be increased from 2.5 (baseline) to 11.5
degrees, without introducing collisions.

• Distance model error can be increased from 0.05 (base-
line) to 0.13, without introducing collisions. In absolute
terms, 0.13 is a large standard deviation of error since
0 ≤ distance ≤ 1 (row center is 0.5).

ApproxCaliper: A Programmable Framework for Application-aware Neural Network Optimization

• Errors can be simultaneously increased in both models.
For instance, heading error and distance error can be
simultaneously increased by 3× and 1.6×, respectively,
without introducing collisions.

Overall, these observations show that ApproxCaliper dis-
covers significant room for relaxing the accuracy.
Error Calibration Results on Polaris-GEM. For Polaris-
GEM, we study the interplay of model FPS and lane detec-
tion accuracy. We performed a similar analysis (and found
similar insights) for CropFollow that we do not include for
lack of space. Figure 9 shows the generated error constraint
space. The key findings are:

• Higher FPS can counteract the effect of higher errors. As
FPS increases from 4.5 to 9.8, lane detection accuracy can
be reduced from 99.7% to 70.3%, without introducing
any lane departures. Further investigation showed that, at
high FPS, the effect of an erroneous prediction is short-
lived since it enables more control actions per second.

• FPS and lane detection accuracy compensate for each
other to a limited extent. No configuration with FPS
below 4.5 or lane detection rate below 70% is feasible.

5.3 Guided vs. Unguided Tuning on CropFollow.
To answer RQ3, we compare guided and unguided tuning
with ApproxCaliper.
Comparing Speedups. Figure 6 shows the model FPS
achieved by guided and unguided tuning for CropFol-
low. Guided tuner provides a 1.76 × speedup (184.9 FPS
vs. 105.8 FPS) over unguided tuning. Guided tuning also
finds many more high-performance configurations. Across
30 field evaluations of guided tuning, it found 5 configura-
tions that provided higher FPS than the unguided tuner’s
best result (105.8 FPS) in 50 field evaluations.
Figure 7 shows the utilization rate achieved by guided and
unguided tuning for the Polaris-GEM experiment. Guided
tuning provides a 1.1× speedup over unguided tuning (GPU
utilization of 2.66% vs. 2.92%). In addition, guided auto-
tuning discovers the best found configuration on only the
second simulator evaluation, while unguided tuning didn’t
find a single valid configuration (i.e., one with acceptable
QoS) for the first 10 evaluations (hence the blue line starts
at evaluation 10 in Figure 7).
Effectiveness of Guided Tuning. Guided tuning uses the
error calibration result to filter out configurations in the in-
valid regions and less performant configurations that are
not fully pushing the boundary of acceptable error. A
large fraction, 82% (41/50) of configurations evaluated in
our unguided tuning experiment for CropFollow, and 78%
(39/50) of configurations for unguided tuning for Polaris-
GEM would be filtered/skipped if the same configurations
are considered using guided tuning (i.e., using the error con-
straint space from calibration phase). Guided tuning is more
effective because it focuses more of the tuning budget on

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Heading StdDev (degree)

0.0

0.1

0.2

0.3

Di
st

an
ce

 S
td

De
v valid

invalid

Figure 10: CropFollow: Configurations evaluated empirically in
unguided autotuning (points) vs. error calibration regions used by
guided autotuning (red and green polygons).

configurations that are not known to be (likely) invalid, and
likely to be performant.

5.4 Testing the Configurations in the Wild
To evaluate RQ4, Figure 10 shows the 50 configurations
evaluated in unguided tuning for CropFollow (Figure 6)
overlaid on the error calibration results (Figure 8). We il-
lustrate using unguided tuning since the configurations are
more spread out across all 3 regions (valid, invalid, and
undetermined regions) than guided tuning. Valid and invalid
configurations are shown as green and red points respec-
tively. Only two of the 50 points are false positives (red
points in the green region), and there are no false negatives
(no green points in the red region). The white region is
unvisited and is expected to include both valid and invalid
points. Similarly, for Polaris-GEM (figure not shown), we
observe only three false positives and no false negatives out
of 50 simulator evaluations for unguided tuning.
The results show that the valid/invalid regions found by the
error calibration phase correspond well to the real-world sep-
aration between acceptable and unacceptable configurations.
The few false positives we observe (e.g., red point in the
green boundary region) are likely due to out-of-distribution
errors, caused by networks being trained on different data
(standard neural network training assumption).

5.5 ApproxCaliper with Low-rank Factorization
Our results so far used structured pruning since it provided
a strictly better tradeoff (better accuracy and performance)
compared to LR factorization. A key contribution of Ap-
proxCaliper, however, is that it can make NN optimizations
more effective by allowing them to be used more aggres-
sively, even with reduced accuracy, by ensuring that the
overall application use case meets its goals. Here we evalu-
ate the LR factorization technique to show that these benefits
of ApproxCaliper generalize beyond pruning. We generate
12 factorization levels of the LaneNet-VGG16 NN used in
Polaris-GEM and evaluate the end-to-end QoS (lane depar-
ture situations) for each of the optimized model variants. For
simplicity, we do not vary FPS and configure the FPS to its
maximum of 10.5. If the model provides an FPS higher than
the configured FPS of 10.5, artificial sleeps are added be-

ApproxCaliper: A Programmable Framework for Application-aware Neural Network Optimization

30 40 50 60
FPS

0.0

0.2

0.4

0.6

0.8
La

ne
 D

et
. E

rro
r

1 2 3 4 5 6 7 8 910

11

12
Baseline
Valid
Invalid

Figure 11: The compute performance (FPS) vs. lane detection
error of low-rank factorized models. Green points have valid QoS,
and red points have invalid QoS. The red dotted line shows error
threshold (36.4%) above which configurations are invalid.

tween model invocations, to reduce GPU utilization. Hence,
a higher model FPS enables lower GPU utilization. Fig-
ure 11 presents the different factorization levels laid out on
an accuracy vs. performance tradeoff space.
The highest factorization level with acceptable QoS is level
10, which provides an FPS of 59.1, 2.2× higher than factor-
ization level 2, which is the most efficient model with error
lower than (or equal to) the baseline. The key takeaway is
that ApproxCaliper enables both LR factorization and LRR
to deliver much higher benefits by considering the error
slack in the application; we expect these benefits to extend
to other accuracy-relaxing optimizations.

6 RELATED WORK
There is a long record of work on approximate computing
approaches (Stanley-Marbell et al., 2020) that relax accu-
racy to improve application performance and programming
systems for accuracy-aware optimization (Misailovic, 2022).
We focus here on systems for optimization in deep learning.
Systems for Automatic Model Optimization. A major
limitation of existing neural network optimization systems
(Han et al., 2016; 2015; Zhu & Gupta, 2018; Frankle &
Carbin, 2019; Anwar et al., 2017; He et al., 2017; Li et al.,
2017; Molchanov et al., 2017; Hubara et al., 2017; Zhou
et al., 2016; 2017; Zhu et al., 2017; Swaminathan et al.,
2020; Sainath et al., 2013; Davis & Arel, 2014; Chen et al.,
2017) is that they tune NN models in isolation, and unlike
ApproxCaliper, do not exploit application-level error re-
silience. ApproxCaliper has complementary goals to these
model optimization techniques. ApproxCaliper can use
these techniques (e.g., pruning and low-rank factorization)
much more aggressively – it relaxes model accuracy to the
extent that application-level goals are not compromised.
Accuracy-aware ML Optimization Systems. While some
automated model optimization systems (Tian et al., 2021;
Sharif et al., 2019; 2021; Xu et al., 2020; 2021; Joseph et al.,
2020) allow users to specify an acceptable accuracy loss
specification (e.g., 1%, 2% loss) for optimization, these
strategies are not application-aware. Instead, they consider
the neural network to be the entire application, i.e., the NN
error is the QoS loss. This work shows that application-

level error resilience often allows individual NN accuracy
to be relaxed more aggressively to gain higher compute
performance while satisfying end-to-end QoS goals. One
important limitation of existing accuracy-aware optimiza-
tion systems is the lack of mechanisms for jointly optimizing
in the presence of simultaneous errors in multiple neural
network components in the application (as ApproxCaliper
does in §5.2) A second important limitation is that none of
these systems can model the joint impact of NN’s accuracy
and performance on application QoS. As our Polaris-GEM
results show, the end-to-end QoS is not only dependent on
NN accuracy: it can also be impacted by NN latency (FPS)
and other application-specific parameters (§5.2). Approx-
Caliper’s capabilities are broader than existing accuracy-
aware optimization systems. It defines a programmable in-
terface for computing application-specific error constraints,
and can model error interactions across multiple NN com-
ponents and between performance and accuracy.

7 DISCUSSION AND CONCLUSION
ApproxCaliper is the first programmable framework for
application-aware neural network optimization. We present
a novel approach for optimizing an application’s end-to-
end QoS that reduces the search space to the error space
of its neural network components. Our evaluations on au-
tonomous cyber-physical systems show that application-
aware optimization has tremendous potential in enabling
compute-intensive ML models to run on edge hardware.
Similar opportunities for approximation exist in AR/VR,
data analytics, and robotic manipulation, and many others.
Our preliminary results (not included) show that a stem
counting data analytics workload and a eye-tracking based
foveated rendering (Singh et al., 2023) also present sig-
nificant opportunities for application-aware optimization.
Beyond inherently approximate applications, we anticipate
that ApproxCaliper’s error calibration can be generally used
to quantify the level of error-resilience across various kinds
of applications.

ACKNOWLEDGEMENTS
We are grateful to Sri Theja Vuppala and Andres Baquero for
supports on the setup of the CropFollow system, and Chiao
Hsieh for the supports on the Polaris-GEM simulator. This
research was supported in part by the DARPA ERI Domain-
Specific System on Chip (DSSoC) program, the National
Science Foundation (Grants No. CCF-1846354, STTR-
1951250, CCF-1956374, CCF-2217144), the Agriculture
and Food Research Initiative (AFRI) (grant No. 2020-67021-
32799, project accession No. 1024178) from the USDA
National Institute of Food and Agriculture, the Amazon
Machine Learning Research Awards (MLRA) program, the
Amazon Research Awards program, and the University of
Illinois Center for Digital Agriculture.

ApproxCaliper: A Programmable Framework for Application-aware Neural Network Optimization

REFERENCES
Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley,

J., Bosboom, J., O’Reilly, U.-M., and Amarasinghe, S.
Opentuner: An extensible framework for program auto-
tuning. In Proceedings of the 23rd international confer-
ence on Parallel architectures and compilation. ACM,
2014.

Anwar, A. and Raychowdhury, A. Autonomous naviga-
tion via deep reinforcement learning for resource con-
straint edge nodes using transfer learning. IEEE Ac-
cess, 8:26549–26560, 2020. doi: 10.1109/ACCESS.2020.
2971172.

Anwar, S., Hwang, K., and Sung, W. Structured pruning
of deep convolutional neural networks. ACM Journal on
Emerging Technologies in Computing Systems (JETC),
13(3), 2017.

Chen, T., Liu, H., Shen, Q., Yue, T., Cao, X., and Ma, Z.
Deepcoder: A deep neural network based video compres-
sion. In 2017 IEEE Visual Communications and Image
Processing (VCIP). IEEE, 2017.

Davis, A. S. and Arel, I. Low-rank approximations for
conditional feedforward computation in deep neural net-
works. In Bengio, Y. and LeCun, Y. (eds.), 2nd Inter-
national Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April, 2014, Workshop Track
Proceedings, 2014. URL http://arxiv.org/abs/
1312.4461.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, 2009. doi: 10.1109/CVPR.2009.
5206848.

Earthsense. A Growing Presence on the Farm: Robots.
https://www.nytimes.com/2020/02/13/
science/farm-agriculture-robots.html,
2020.

Falanga, D., Kim, S., and Scaramuzza, D. How fast is too
fast? the role of perception latency in high-speed sense
and avoid. IEEE Robotics and Automation Letters, 4(2):
1884–1891, 2019.

Fan, X., Weber, W.-D., and Barroso, L. A. Power provi-
sioning for a warehouse-sized computer. SIGARCH Com-
put. Archit. News, 35(2):13–23, jun 2007. ISSN 0163-
5964. doi: 10.1145/1273440.1250665. URL https:
//doi.org/10.1145/1273440.1250665.

Figurnov, M., Ibraimova, A., Vetrov, D., and Kohli, P. Perfo-
ratedcnns: Acceleration through elimination of redundant
convolutions. arXiv preprint arXiv:1504.08362, 2015.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In 7th Inter-
national Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both
weights and connections for efficient neural networks.
CoRR, abs/1506.02626, 2015.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural network with pruning, trained
quantization and huffman coding. In Bengio, Y. and Le-
Cun, Y. (eds.), 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
2016.

He, Y., Zhang, X., and Sun, J. Channel pruning for acceler-
ating very deep neural networks. In IEEE International
Conference on Computer Vision, ICCV 2017, Venice,
Italy, October 22-29, 2017, pp. 1398–1406. IEEE Com-
puter Society, 2017. doi: 10.1109/ICCV.2017.155. URL
https://doi.org/10.1109/ICCV.2017.155.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Quantized neural networks: Training neural
networks with low precision weights and activations. The
Journal of Machine Learning Research, 18(1):6869–6898,
2017.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,
Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and 0.5mb model
size, 2016.

Joseph, V., Gopalakrishnan, G. L., Muralidharan, S., Gar-
land, M., and Garg, A. A programmable approach to
neural network compression. IEEE Micro, 40(5):17–25,
2020.

Kim, J.-H., Sharma, G., and Iyengar, S. S. Famper: A
fully autonomous mobile robot for pipeline exploration.
In 2010 IEEE International Conference on Industrial
Technology. IEEE, 2010.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf,
H. P. Pruning filters for efficient convnets. International
Conference on Learning Representations (ICLR), 2017.

Misailovic, S. Accuracy-aware compilers. In Approximate
Computing Techniques: From Component-to Application-
Level, pp. 177–214. Springer, 2022.

http://arxiv.org/abs/1312.4461
http://arxiv.org/abs/1312.4461
https://www.nytimes.com/2020/02/13/science/farm-agriculture-robots.html
https://www.nytimes.com/2020/02/13/science/farm-agriculture-robots.html
https://doi.org/10.1145/1273440.1250665
https://doi.org/10.1145/1273440.1250665
https://doi.org/10.1109/ICCV.2017.155

ApproxCaliper: A Programmable Framework for Application-aware Neural Network Optimization

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz,
J. Pruning convolutional neural networks for resource
efficient inference. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France,
April, 2017, Conference Track Proceedings, 2017.

Neven, D., De Brabandere, B., Georgoulis, S., Proesmans,
M., and Van Gool, L. Towards end-to-end lane detec-
tion: an instance segmentation approach. In 2018 IEEE
intelligent vehicles symposium (IV), 2018.

Pedersen, S. M., Fountas, S., Have, H., and Blackmore,
B. Agricultural robots—system analysis and economic
feasibility. Precision agriculture, 7(4), 2006.

Redmon, J. and Farhadi, A. Yolov3: An incremental im-
provement. arXiv preprint arXiv:1804.02767, 2018.

Renda, A., Frankle, J., and Carbin, M. Comparing rewinding
and fine-tuning in neural network pruning. In Interna-
tional Conference on Learning Representations, 2020.

Ruan, X., Liu, Y., Yuan, C., Li, B., Hu, W., Li, Y., and May-
bank, S. Edp: An efficient decomposition and pruning
scheme for convolutional neural network compression.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 32(10), 2021. doi: 10.1109/TNNLS.2020.3018177.

Sainath, T. N., Kingsbury, B., Sindhwani, V., Arisoy, E.,
and Ramabhadran, B. Low-rank matrix factorization
for deep neural network training with high-dimensional
output targets. In 2013 IEEE international conference on
acoustics, speech and signal processing. IEEE, 2013.

Salfer-Hobbs, M. and Jensen, M. Acceleration, braking, and
steering controller for a polaris gem e2 vehicle. In 2020
Intermountain Engineering, Technology and Computing
(IETC). IEEE, 2020.

Sharif, H., Srivastava, P., Huzaifa, M., Kotsifakou, M., Joshi,
K., Sarita, Y., Zhao, N., Adve, V. S., Misailovic, S.,
and Adve, S. V. Approxhpvm: a portable compiler ir
for accuracy-aware optimizations. Proc. ACM Program.
Lang., 3(OOPSLA), 2019.

Sharif, H., Zhao, Y., Kotsifakou, M., Kothari, A., Schreiber,
B., Wang, E., Sarita, Y., Zhao, N., Joshi, K., Adve, V. S.,
Misailovic, S., and Adve, S. V. Approxtuner: a com-
piler and runtime system for adaptive approximations. In
Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2021.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Singh, R., Huzaifa, M., Liu, J., Patney, A., Sharif, H., Zhao,
Y., and Adve, S. V. Power, performance, and image qual-
ity tradeoffs in foveated rendering. 2023 IEEE Confer-
ence Virtual Reality and 3D User Interfaces (VR), 2023.

Sivakumar, A. N., Modi, S., Gasparino, M. V., Ellis,
C., Velasquez, A. E. B., Chowdhary, G., and Gupta,
S. Learned visual navigation for under-canopy agri-
cultural robots. CoRR, abs/2107.02792, 2021. URL
https://arxiv.org/abs/2107.02792.

Stanley-Marbell, P., Alaghi, A., Carbin, M., Darulova, E.,
Dolecek, L., Gerstlauer, A., Gillani, G., Jevdjic, D.,
Moreau, T., Cacciotti, M., Daglis, A., Jerger, N. E.,
Falsafi, B., Misailovic, S., Sampson, A., and Zufferey,
D. Exploiting errors for efficiency: A survey from cir-
cuits to applications. ACM Comput. Surv., 53(3), jun
2020. ISSN 0360-0300. doi: 10.1145/3394898. URL
https://doi.org/10.1145/3394898.

Swaminathan, S., Garg, D., Kannan, R., and Andres, F.
Sparse low rank factorization for deep neural network
compression. Neurocomputing, 398, 2020.

Tai, C., Xiao, T., Zhang, Y., Wang, X., et al. Convolutional
neural networks with low-rank regularization. Interna-
tional Conference on Learning Representations (ICLR),
2016.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D.,
Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M.,
Hoffmann, G., et al. Stanley: The robot that won the
darpa grand challenge. Journal of field Robotics, 23(9),
2006.

Tian, Q., Arbel, T., and Clark, J. J. Task dependent deep lda
pruning of neural networks. Computer Vision and Image
Understanding, 203:103154, 2021.

Venkataramani, S., Choi, J., Srinivasan, V., Wang, W.,
Zhang, J., Schaal, M., Serrano, M. J., Ishizaki, K., In-
oue, H., Ogawa, E., Ohara, M., Chang, L., and Gopalakr-
ishnan, K. Deeptools: Compiler and execution runtime
extensions for rapid ai accelerator. IEEE Micro, 39:102–
111, 2019.

Xu, R., Zhang, C.-l., Wang, P., Lee, J., Mitra, S., Chaterji, S.,
Li, Y., and Bagchi, S. Approxdet: content and contention-
aware approximate object detection for mobiles. In Pro-
ceedings of the 18th Conference on Embedded Networked
Sensor Systems, pp. 449–462, 2020.

Xu, R., Kumar, R., Wang, P., Bai, P., Meghanath, G.,
Chaterji, S., Mitra, S., and Bagchi, S. ApproxNet: Con-
tent and Contention-Aware Video Object Classification
System for Embedded Clients. ACM Transactions on
Sensor Networks, pp. 11:1–11:27, 2021.

Zhou, K. Tusimple benchmark ground truth, Oct
2018. URL https://github.com/TuSimple/
tusimple-benchmark/issues/3.

https://arxiv.org/abs/2107.02792
https://doi.org/10.1145/3394898
https://github.com/TuSimple/tusimple-benchmark/issues/3
https://github.com/TuSimple/tusimple-benchmark/issues/3

ApproxCaliper: A Programmable Framework for Application-aware Neural Network Optimization

Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y., and Zou,
Y. Dorefa-net: Training low bitwidth convolutional
neural networks with low bitwidth gradients. CoRR,
abs/1606.06160, 2016. URL http://arxiv.org/
abs/1606.06160.

Zhou, S.-C., Wang, Y.-Z., Wen, H., He, Q.-Y., and Zou,
Y.-H. Balanced quantization: An effective and efficient
approach to quantized neural networks. Journal of Com-
puter Science and Technology, 32(4):667–682, 2017.

Zhu, C., Han, S., Mao, H., and Dally, W. J. Trained ternary
quantization. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Conference Track Pro-
ceedings, 2017. URL https://openreview.net/
forum?id=S1_pAu9xl.

Zhu, M. and Gupta, S. To prune, or not to prune: Exploring
the efficacy of pruning for model compression. In 6th
International Conference on Learning Representations,
ICLR 2018, Workshop Track, 2018.

http://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1606.06160
https://openreview.net/forum?id=S1_pAu9xl
https://openreview.net/forum?id=S1_pAu9xl

