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Abstract

Trapped-ion (TI) qubit architectures have recently become
a promising candidate for designing and building quantum
computers. In the current noisy-intermediate scale quantum
(NISQ) era, TI qubits stand out for their connectivity and reli-
ability over other candidates such as superconducting qubits.
However, physical constraints stemming from fine-grained
frequency control of TI qubits introduce limitations to the
maximum number of trapped-ions in a quantum computing
system. This fundamentally challenges the design of large TI-
based quantum computers, with various quantum applications
requiring a large number of qubits for practical realization.

Recent work has proposed TI Quantum Charge Coupled
Devices (QCCD) which provides mechanisms to link multiple
ion-chains together to address the issue of scalability. While
such advances help increase the total qubit count in a TI
system, the weak links between ion chains introduce a
performance bottleneck and gate-latency penalty. Prior TI
modeling toolflows have not explored the performance and
scalability implications introduced by weak links on the design
of future TI systems; in this work, we directly elevate the weak
link as an architectural knob, and present an architecture-level
performance modeling framework called VelociTl. We use
VelociTI to study the performance trade-offs in a trapped-ion
quantum computing design and find that optimal scheduling
of qubits can provide a 6.2x speedup in performance.

1. Introduction

Quantum computer (QC) designs have advanced rapidly
over the last decade. Google [4], IBM [9], and IonQ [13]
have all recently launched 100+ qubit processors, up
from single digits at the turn of the century. Multiple
quantum computing simulators have also been introduced
by various cloud vendors, including IBM (Qiskit [1]),
Microsoft (Azure Quantum [5]), and Amazon (Braket [2]),
allowing researchers to begin exploring and studying
quantum applications and future hardware designs.

Despite their name, quantum computers are more
akin to quantum processing units (QPUs), and are better
construed as extremely fast and efficient accelerators
for solving certain problems that classical computers

may struggle with [3, 8, 11, 25]. In the modern age of
heterogeneous system designs, such a computing model
would require that classical computers set up the inputs for
a QPU, then the use of quantum acceleration for the task at
hand, followed by classical postprocessing. While various
costs may be associated with the setup, execution, and
collection of results in this workflow, the computational
acceleration provided by a QPU is expected to be sufficiently
large, such that associated overheads are comparatively
justified. Thus, under this premise, most recent work has
focused more on functionality by addressing quantum
decoherence (i.e., error) and scaling up quantum computers
(in order to eventually solve useful problems), with less
attention being attributed to actual QPU performance.

While scale and accuracy are fundamental tenants for
practical QPU realization in the noisy intermediate-scale
quantum (NISQ) era, the tenant of performance is an
important metric for evaluating and comparing different
hardware solutions for a QPU. In particular, there are a
couple of competing technologies for qubit implementations,
each with their strengths and weaknesses. In this work,
we focus on TI technology for qubit implementation, and
take an architecture-directed approach for evaluating the
performance and scaling potential of QPUs.

The building block of the TI QC is referred to as a chain.
This chain contains the trapped ions which act as the qubits
which are used for computation. Multiple published systems
can address up to 32 ions through the use of a 32-channel
acousto-optic modulator (AOM) [10, 12, 18]. To scale the
number of qubits, chains are linked together to form multi-
ple ion chains. TI QCs possess the advantage of providing
all-to-all connectivity between qubits within a chain, as
well as the condition that the quality of all qubit pairs
in a chain are equal. The drawback is connection latency
between multiple chains: communication across chains has
a longer latency than operations within a chain, due to
the optics required over free-space paths which introduces
significant drift and noise into the system [21, 24, 28]. We
refer to such connections between chains as weak links.

Weak links present an architecture-level knob for
scaling TI-based QPUs. While weak links provide physical
mechanisms to scale qubits beyond their chain limitations,
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Figure 1: High-level overview of VelociTI.

exploring the trade-off between “horizontal” and “vertical”
scaling has not been performed before. Additionally,
understanding the impact of weak links on performance
can help usher and navigate early design space explorations
for QPU hardware, elevating hardware-specific details for
architectural evaluation. To the best of our knowledge, we
are the first work to provide architecture-level abstractions
and performance models to evaluate the weak link as
TI QCs scale from the NISQ-era systems (50-100 qubits)
to beyond. We propose VelociTl: an architecture-level
performance modeling framework for Trapped-Ion quantum
computers. We make the following novel contributions:
€ An architecture-level performance modeling framework
with TI abstractions for quantum and classical architects
to evaluate, optimize, and scale NISQ-era QCCD-based
TI system designs (§2, §3)
@ An evaluation of optimal TI configuration for a range of
quantum applications on QCCD-based TI systems (§4.1)

2. VelociTI Framework Overview

While the differences between classical and quantum
accelerators may seem stark, this also creates a unique
opportunity for computer architects to bridge the gap
between the hardware and the software in the quantum
space, and explore the integration of a QPU within a
classical computing system.

2.1. Performance Modeling Goals

The realm of quantum computing offers a huge design
space for hardware and software exploration. Understanding
and exposing the correct abstractions from the physical
qubit level will greatly benefit architects and compiler
designers to bridge the gap for algorithm and software
developers. At the same time, architects can help understand
the needs of software, using the knowledge to explore and
direct the qubit technology for the NISQ era. One of the
primary goals of VelociTI is to bridge the gap between
low-level hardware implementations (i.e., of the trapped-ion

chain) and higher system level challenges such as scalability
and performance. While many prior works in the domain
have abstracted down to the gate level only (since supercon-
ducting qubits have been the only practical technology for
QCs for many years), our framework helps expose architects
to the unique advantages of trapped-ion technology.

Such an exploration requires modeling and simulation
workflows to gauge the benefits and drawbacks of the
technology, particularly as physicists tackle the challenging
aspect of controlling quantum properties for computation.
Prior work has focused on functional correctness of
computation on TI quantum computers [20, 27], addressing
the issues of error accumulation and information
management. However, the issue of scale has been a
challenge, both with horizontal scaling techniques via longer
ion-chain studies [23] and vertical scaling via weak links.

2.2. VelociTI Design and Workflow

Figure 1 depicts a high level overview of VelociTL
VelociTI is broadly composed of three stages:

1) Boundary conditions: The input into the system is
a set of boundary conditions required for simulation.
This is composed of two parts: a general circuit
description, which specifies components that represent
a quantum application, such as the number of qubits,
the number of 1-qubit gate operations, and the number
of 2-qubit gate operations. The second part is a set of
timing configurations for the system, including 1-qubit
operation latency, 2-qubit operation latency, and the
weak-link penalty for communication across chains.

2) Place-and-route: Using the boundary conditions as
input, the second phase generates potential circuit
layouts, in the context of trapped-ion chains and
weak-link availability. While the space of possible
layouts is extremely large, we focus on an optimization
target to help generate circuits. In this work, our
target is to minimize area, although other potential
optimizations can be used. Minimizing area implies



understanding whether to place qubits on previously
populated chains, or to introduce a new chain.
Additionally, gate operations have constraints that
need to be managed as well in this step, as 2-qubit
gates can not necessarily operate on any two qubits in
the system (only within a chain or at the weak links).
3) Performance Modeling: The third phase uses the
generated circuit layouts to predict total execution
time. As quantum computers offer a large degree
of computational parallelism, our models take
into account circuit design to find the shortest
execution time possible, and compare to a baseline
implementation where no parallelism is enforced
(which may occur if a system is naively scheduled).

Finding an optimal placement of qubits and gates
within a set of trapped-ion chains is a prohibitively
expensive operation. Instead, VelociTl uses a pseudo-
random placement policy for generating a single circuit
layout, followed by averaging across multiple circuit
designs during the performance modeling.

We first compute a minimal number of ion-chains, as a
function of the ion-chain length and the qubits present in
the system (provided from the boundary conditions). With
the number of ion-chains fixed, we randomly place qubits
and distribute them across the chains. Subsequently, we
place 1-qubit and 2-qubit gates to operate on the qubits, with
the condition that 2-qubit operations are restricted to intra-
chain operations or weak-link operations - in other words,
communication between two chains via a gate must occur
via the weak link connection, and only the qubits on the
edge of a weak link can be used for such communications.

3. Trapped-Ion Chain Performance Modeling

In this section, we outline our performance models for
a multi-chain TI quantum computer architecture. We first
implement a serial performance model as a baseline study,
followed by a parallel model for capturing the parallel
nature of a TI quantum computer.

3.1. Model parameters

The model parameters which VelociTI uses to represent
a quantum TI system includes the total number of qubits,
the total number of gates, the latency required for different
kinds of gates (all 1-qubit gates have the same latency and
all 2-qubits have the same latency except for if there is a
weak link involved [6, 26, 28]), the penalty term for a 2-qubit
gate latency that involves a weak link, and the optimization
target (e.g. area) for determining the number of ion chains
to be used. The computed parameters include the number of
chains, the number of available weak links, and the number
of weak links that were used during gate placement.

3.2. Intra-chain parallelism using a directed
graph
With the TI architecture, it is possible for chains to

operate in parallel if a weak link is not involved. This intra-
chain parallelism allows for higher performance and opens

the door to more optimization opportunities. Conceptually,
two chains can operate in parallel so long as scheduled gate
operations do not cross the weak-link boundary, at which
point serialization operations are required for ordering. To
allow us to take advantage of compute parallelism, we use a
directed graph for gates to compute longest paths. This ulti-
mately will be used in calculating performance for a circuit.

Nodes are used to represent gate operations, introducing
an explicit ordering which can be used to extract parallelism.
Specifically, the directed edges between nodes indicates the
order of operations. Thus, there will be multiple paths in
a graph to represent the different communication paths
between qubits in a circuit. Edge weights are used to repre-
sent the latency of a node/gate. Given that an edge connects
two nodes/gates, we set an edge weight to correspond to an
incoming gate’s latency. To make sure that all gate latencies
are accounted for, in the case of an edge involving a “start
node”, the corresponding edge weight will be the sum
of both the incoming and outgoing nodes. A “start node”
simply refers to a node which is connected to an input qubit.

3.3. Calculating performance

Once the graph representation is constructed, we can
calculate the performance of the circuit. Using the represen-
tation that we have built, we can take advantage of existing
graph algorithms for computing longest path in order to
compute the overall parallel performance of a circuit. The
parallel performance model calculates the total latency of
each parallel path by summing the edge weights between all
nodes in each path, and then returns the highest latency of
all the parallel paths. This is the total latency of the circuit.

4. TI Performance Evaluation Using Realistic
Circuit Models

To demonstrates the use of VelociTl, we now perform
a case study. Given an available, pre-built system with
specific parameters defined by the hardware, we determine
what is the best mapping of the quantum application onto
the system. For our case study, we run VelociTIl with 6
quantum computing applications: Supremacy [3, 19], Quan-
tum Approximate Optimization Algorithm (QAOA) [14-16,
22], SquareRoot (Grover’s search algorithm [17]), Quantum
Fourier Transform (QFT) [7], Adder, and Bernstein-Vazirani
(BV) [29]. We choose these applications because they pro-
vide a variety in (a) number of qubits, (b) number of 2-qubit
gates, and (c) ratio of 2-qubit gates to qubits. An overview of
these applications are shown in Table 1. These applications
have been used in previously published TI architecture work
[23]. For our gate latency model, we use a latency of 1 us for
a 1-qubit gate and a latency of 100 us for a 2-qubit gate. This
gate latency model has been experimentally validated in
multiple prior published works on TI systems [6, 26]. In the
case of a weak link, we apply a penalty factor of 2 based on
experimental validation in previously published work [28].



Application | Qubits | 2-qubit Gates

Supremacy 64 560

QAOA 64 1260

SquareRoot 78 1028

OFT 64 4032

Adder 64 545

BV 64 64
TABLE 1: Applications with attributes used in our
evaluation.

4.1. Case Study: What is the best estimated per-
formance for a given hardware implementation?

For each application, we run both the serial and parallel
model. For this we use a chain length of 16 qubits, and we
assume an area optimized architecture where the minimum
number of chains are used. Given that the SquareRoot
application has more qubits than the others, one additional
chain is needed compared to the other applications. For
qubit and gate scheduling, we utilize a purely random ap-
proach without the use of any optimizations. The resulting
performance is shown in Figure 2. We run each application
35 times and each bar shows the average execution time
with a vertical bar indicating the maximum and minimum
execution time reported for each benchmark. On average,
serial execution time is 69.3 ms and parallel performance is
11.2 ms with parallel model achieving an average speedup
6.2x over the serial model. As expected, serial and parallel
performance is a function of the number of 2-qubit gates:
the application with largest number of 2-qubit gates, QFT,
has the longest latency: 403.6 ms serially and 74.5 ms
when run with between-chain parallelism enabled.

We also observe that the benefit of using the serial
model versus parallel model is benchmark dependent. For
Supremacy, QAOA, SquareRoot, QFT, and Adder, parallel
speedup is around 6x whereas BV achieves a parallel
speedup of 9.9x. This is in part due to the lowest ratio
of 2-qubit gates to qubits (1:1) in BV. As the ratio of
2-qubit gates to number of qubits increases, the number
of parallel compute paths decreases and the length of the
remaining paths increase at an even faster rate as qubits
become more connected. This is interesting as there may
be applications in the future with an even higher ratio of
2-qubit gates to qubits than the applications used in this
case study, in which case—when taking into account the
increased overhead of parallel scheduling—it may be more
worth it to schedule and execute serially.

We now relax the architecture design to sweep the chain
length within a presently achievable range (8, 16, 24, and
32 ions per chain). In the case of Supremacy, QAOA, QFT,
Adder, and BV, this creates 8, 4, 3, and 2 weak links, respec-
tively. For SquareRoot which has a larger number of qubits,
the number of weak links is 10, 5, 4, and 3, respectively.
We look at how the change in chain length affects the
performance of the quantum applications. For this analysis,
we disregard the serial model as it is consistently worse.

Figure 3 shows parallel execution time for the
applications with varying TI chain length. We observe that
sweeping chain length from 8 to 32 results in an average
speedup of 20%. Again, we notice different behavior for
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Figure 2: Estimated performance on a given practical
TI hardware implementation.
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Figure 3: Estimated performance as a function of
chain length.

BV with a speedup of only 11% between chain length of 8
qubits to 32 qubits. In classical computing, this magnitude
of speedup would be significant; however, it is unclear
whether such a speedup would matter in a real quantum
accelerator use case. Our results show that increasing chain
length horizontally suggests a continued improvement
in performance for parallel execution. This encourages
continued development of longer chains physically.

5. Conclusion

In this work, we developed and concretized architecture-
level abstractions for QCCD-based TI systems which we
used as a foundation for design and implementing VelociTI,
an architecture-level performance modeling framework for
Trapped Ion Quantum Computers. We evaluate VelociTI
by conducting a case study which represents the use cases
of a tool like VelociTl. For a given HW implementation
and suite of applications, we find that the place-and-route,
i.e. mapping scheme, of the qubits and gates can have a
6.2X difference in performance.
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