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Abstract—This paper presents GoldenEye, a functional simulator
with fault injection capabilities for common and emerging numerical
formats, implemented for the PyTorch deep learning framework. Gold-
enEye provides a unified framework for numerical format evaluation of
DNNs, including traditional number systems such as fixed and floating
point, as well as recent DNN-inspired formats such as block floating
point and AdaptivFloat. Additionally, GoldenEye enables single- and
multi- bit flips at various logical and functional points during a value’s
lifetime for resiliency analysis, including for the first time attention to
numerical values’ hardware metadata. This paper describes Golden-
Eye’s technical design and implementation which make it an easy-to-
use, extensible, versatile, and fast tool for dependability research and
future DNN accelerator design. We showcase its utility with three case
studies: a unifying platform for number system comparison and eval-
uation, a design-space exploration heuristic for data type selection, and
fast DNN reliability analysis for different error models. GoldenEye is
open-sourced and available at: https://github.com/ma3mool/goldeneye.

I. INTRODUCTION

Computer number formats form the underlying representation of
real numbers in modern digital device hardware. Precise specifica-
tions and implementations of computer number formats form the
basis of hardware arithmetic and functional units in processors. How-
ever, the use of binary logic introduces an inherent approximation
of real numerical values, and thus introduces the rise of many repre-
sentations of numbers in hardware. Since the late 1970s, more than
50 different floating point representations have found their way into
commercial processors [27]. This diversity of value representations
eventually led to the IEEE-754 standard [1], which aimed to insure
reliability and portability of numerical values across processors.

With the recent rise of deep learning (DL), there has been a
renewed interest in number formats, primarily for their potential
performance benefits over traditional IEEE-754 floating point com-
putations. The fundamental property being explored is the tradeoff
between precision and range offered by the underlying number
representation, in the context of DL applications. Consequently,
many recent formats have diverged from the IEEE-754 single- and
half- precision formats in search for number formats with faster
arithmetic computational properties, with minimal accuracy loss
for their higher-level algorithm objectives (such as classification
accuracy in CNNs or specific task accuracy in Transformer).

The exploration of newer number formats in the context of deep
learning is challenging, primarily since the majority of compute fab-
rics available today (namely, CPUs and GPUs) support a limited set
of number formats in the hardware. Consequently, software comput-
ing platforms (e.g., CUDA [28], OpenCL [21]) and DL frameworks
(e.g., PyTorch [30], TensorFlow [2]) are forced to optimize along re-
strictive dimensions in the space of possible number formats. Many

recent performance optimizations in hardware (such as integer quan-
tization) focus on only certain values (such as 8-bit support), which
may be not be the optimal bitwidth choice when exploring hard-
ware/software co-design opportunities for future DL accelerators.

Another important design consideration for number format
selection in the context of DL accelerator design is the algorithmic
reliability of an application in face of transient hardware errors [9].
While precision, dynamic range, arithmetic performance, and area
are generally high on the list of design tradeoffs typically explored
for DL acceleration, DL robustness to errors (as a function of the
underlying number representation) is also a critical component
which should inform the number format selection as a first-order
parameter. Prior work has found that transient bit flips in exponent
bits of IEEE-754 32-bit floating points can lead to erroneous
classifications in CNNs [5], [22]. Additionally, recent work has
found that even single bit flips in quantized INT8 formats can lead
to silent data corruptions (SDCs), especially when the network has
lower confidence in an inference [25].

To enable and propel research in this avenue, we present Gold-
enEye, a functional simulator with fault injection capabilities for
common and emerging numerical formats. In addition to being an
extensible playground for novel data format exploration, GoldenEye
presents a unified framework for evaluating number formats and
their effect on DNN classification accuracy. Our implementation is
designed to be research-friendly (easy to explore or add new number
formats), and is also reasonably fast at both simulating the number
format and running error injection campaigns. GoldenEye currently
includes 5 configurable number formats (§III), and is engineered
in a way to easily incorporate future number formats. Furthermore,
GoldenEye’s error injection capability uniquely pays attention to a
number format’s hardware implementation metadata. Our objective
in performing single-bit flips into different number formats aims
to 1) illustrate that the concept of a "single-bit flip" in software can
mean many different things in hardware, and 2) provide a starting
point for future hardware-aware number format exploration and
functional error modeling in software. Finally, we explore three
uses cases (§IV) to showcase GoldenEye’s utility as a research tool.

In summary, the contributions of this work are:
• A rich, open-sourced framework for number format evaluation

for DL models.
• A fast and extensible code base, enabling fast prototyping in

Python as well as C++/CUDA acceleration potential.
• Fast error injection support for both data values as well as

hardware-aware metadata. We study a total of 8 different
single-bit injection error sites informed by the number format
representations.

https://github.com/ma3mool/goldeneye


• We showcase three use case of GoldenEye for DL accelerator
design, including accuracy measurements, design space
exploration of number formats, and DL model robustness.

II. BACKGROUND

We provide a background on common number formats for DNNs
(§II-A), their relevance to DNN model resilience (§II-B), and their
impact on today’s DL accelerator design space (§II-C).

A. Number Formats for DL, Terminology, and Notations
The underlying number format for DNNs has been extensively

studied in an attempt to improve computational efficiency for DNN
training and inference. Two driving factors for this exploration stem
from the application domain of DL. First, DL models have many
statistical properties, which allow variable relaxation of precision
without significant loss of accuracy. Second, the predominant
computation in a DNN, the multiple-and-accumulate operation (or
MAC), is mathematically a dot product, which can enable various
hardware optimizations for improved speed and/or area.

The IEEE-754 32-bit floating point (or FP32) has historically
been the predominant number format in use, due to its wide adoption
in CPUs and GPUs, and as a standard for hardware design. FP32 has
a bit-width of 32 bits, divided into 3 regions: 1 sign bit, 8 exponent
bits, and 23 mantissa bits. We use the classic notation “e8m23" to
capture the bit assignments (in this paper, we assume all number
formats to be signed unless otherwise noted). Various "named"
floating point (FP) formats include half precision (e5m10), bfloat
(e8m7) [18], TensorFloat (e8m10) [20], and DLFloat (e6m9) [3].

Fixed point (FxP) formats do not have exponent bits, and instead
are split into an integer portion and a fractional portion. FxP have
a reduced dynamic range, but that simplifies the hardware for FxP
arithmetic units. Similar to FP, FxP formats have been explored for
both DL training and inference [13], [31]. For both FP and FxP, we
use the term radix to denote the bit position (from the LSB) which
separates the exponent/integer from the mantissa/fraction.

Integer Quantization (INT) is a form of a fixed point format,
where there are no fractional bits (only integer values). Unlike a
native FxP value, integer quantization typically involves a scaling
factor, which uniformly maps values from one number format (such
as FP32) to a lower precision integer format (i.e., INT8). Integer
quantization has shown immense potential in DL algorithm design
and acceleration, due to its simple hardware structures in addition
to the small impact on overall model accuracy [12], [14].

While FP, FxP, and INT have traditionally shown great promise
for DL efficiency, newer formats derived from these have recently
been proposed as improvements. Block Floating Point (BFP) [19],
for example, leverages the concept of a shared exponent, allowing
a tensor to significantly reduce its memory footprint by only saving
one exponent (e.g., 8 bits) for the entire tensor. BFP has had recent
traction in DL and accelerator design, due to this potential hardware
performance optimization [10], [33], [40]

AdaptivFloat (AFP) [37] is another FP derivative, which uses a
shared exponent bias, adaptively shifting the range of representable
values on the floating point scale to where it is most needed for a
set of tensor values. It has also shown potential for transformers,
and has been adapted for recent DL accelerator designs [35], [36].

Figure 1 summarizes and illustrates the conceptual and imple-
mentation differences of the 5 number formats studied in this paper.
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Fig. 1: Illustration of number formats explored in this paper.

B. Reliability of DL Models
Understanding the impact of a hardware error on the resilience of

software is intrinsically tied to the number format. Prior work has
traditionally explored the “single-bit flip" error model, which many-
times implicitly assumes an IEEE-754 FP32 implementation under
the hood [5], [15], [23], [32]. However, as new number formats
emerge each with different underlying hardware implementations,
the software construct of a single-bit flip requires adjusting for
hardware-aware resiliency analysis.

For example, as described in §II-A, BFP uses the concept of a
shared exponent. While BFP value-wise is similar to FP, the hard-
ware implementation is sufficiently different targeting performance
and bandwidth optimization. Thus, a single bit flip in the shared
exponent bit of BFP is actually equivalent to a multi-bit flip across
the entire tensor of a traditional FP format. Such hardware-aware
modeling is imperative for software-directed error resilience and
analysis. To that end, a primary contribution of this work is to elevate
the hardware implementation of a number format to the software,
to enable more accurate hardware error modeling for DL models.

C. DL Accelerator Design
A major motivation for the design and open-source release of

GoldenEye is the need for better modeling tools for DL accelerators.
Current computing architectures (such as GPUs) have shaped
and defined neural network design in recent years. For example,
TensorRT [39] provides a (closed-source) automatic quantization op-
timization for GPU acceleration. However, since GPUs might only
support 8-bit precision for INT, this may not be the optimal configu-
ration for the DL model topology, and potentially leaves both perfor-
mance and energy efficiency opportunity untouched. Since design-
ing new optimized general-purpose hardware for different number
systems is both costly and impractical, it is important to have good
modeling tools for this space exploration. Furthermore, maintaining
resilience as a first-order design constraint is also crucial, particularly
as many DL domains are safety critical, such as autonomous driving
and medical devices. To the best of our knowledge, GoldenEye is
the first open-source tool providing both these attributes, in addition
to being easy-to-use, fast, and extensible as a research tool.
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Fig. 2: GoldenEye design overview. GoldenEye is applied at a layer-
granularity, supporting different data type emulations and allows error
perturbations in both the data values and hardware-aware metadata.

III. GOLDENEYE DESIGN

GoldenEye is a functional simulator of number formats for DL
exploration, implemented in the popular PyTorch [30] framework.
GoldenEye is designed in such a way that enables the study of
current and emerging number formats for accuracy, precision, and
reliability. This section describes the underlying implementation
details of GoldenEye, which allow it to be fast, extensible, and a
versatile tool for dependability research.

A. GoldenEye Implementation Overview
Modern hardware such as CPUs and GPUs support a limited set

of number formats. In addition to the standard IEEE-754 32-bit float-
ing point (e8m23), we also find lower precision formats such as Half
(e5m10), BFloat (e8m7), TensorFloat (e8m10), and INT-8. Eval-
uating a number format that is not already supported in hardware
requires simulating the number system in software [3], [18], [37].

Figure 2 shows an overview of GoldenEye. While the compute
fabric of the hardware may support FP32, we design a full system
on top of it in software to emulate any arbitrary number system.
GoldenEye leverages PyTorch’s hook functionality to perform
number format emulation at the layer granularity. This requires
reading the original value (e.g., FP32), converting it to the nearest
supported value in the number format being emulated (e.g.,
AdaptivFloat), and then writing the number back at the nearest
numerical value in the HW-supported number system (e.g., FP32).
In the process, we can also extract hardware specific metadata (such
as shared exponents or scaling factors), which may be abstracted in
software but will typically be stored in a dedicated register or storage
structure in hardware. This allows us to decouple the hardware
implementation of the number from the numeric value it represents.

In order to make GoldenEye an extensible research tool, we
define an API requirement for any number system implementation
(§III-B). This API gives users the flexibility to implement
an arbitrary number system, while preserving the end-to-end
semantics to allow the DL model to run seamlessly on top of
the desired compute fabric (e.g., a GPU). Furthermore, it allows
the user to expose any hardware structures as metadata, which
can consequently allow bit flips during a resiliency analysis to
functionally represent hardware structures as desired.

B. GoldenEye API
We provide a hierarchical number format class, which enables

inheritance and pure virtual methods for implementation. The
initialization of the class provides base knobs for the number system
(such as bit_width and radix), and can be extended as
needed (such as adding exp_bias for ADP).

We define four pure virtual methods in GoldenEye, whose
implementation needs to be provided for an arbitrary number
system. The four methods are:

1) tensor real_to_format_tensor(tensor)
2) tensor format_to_real_tensor(tensor)
3) bitstring real_to_format(value)
4) value format_to_real(bitstring)
Method 1 reads in a tensor of values in the number format

of the compute fabric (e.g., FP32), and performs the necessary
software conversions to implement the desired number format.
Method 2 performs the reverse computation, going from the
number format to the “real" value in hardware. We provide a default
implementation for method 2, as it can simply be a cast operation
to torch.float32.

Since Methods 1 and 2 are implemented on an entire tensor,
these operations are very fast, especially if leveraging PyTorch’s
built-in methods and operators for arithmetics. Furthermore, they
can be accelerated by leveraging C++/CUDA calls underneath the
hood (as discussed in §III-C). This differs from Methods 3 and
4, which are scalar operations and are much slower, but provide
fine-grained error injection support.

Method 3 converts a value into its bitstream equivalent as a list,
adhering to the number format’s interpretation, while Method 4
performs the reverse operation (bitstream to value). These latter
two functions streamline error injection operations in a value’s
data, one of the features provided by GoldenEye. The API can thus
be invoked in an abstract routine for error injections, by calling
Method 3, flipping a bit, then calling Method 4 sequentially. We
use the PyTorchFI [24] tool to accelerate this routine for data value
injections where appropriate.

While the scalar operations (and, more generally, the error
injection routine) is slower due to bit manipulations, we find that
the overhead is negligible since this happens infrequently (i.e., a
single bit flip during a DNN inference). GoldenEye’s API aims to
provide both the speed (via tensor manipulation) and the granular
control of values (via scalar operation) to the researcher, while
abstracting the complexity of PyTorch’s hook’s implementation
to improve user productivity.

Metadata support, both for number format emulation and error
injections, is supported at the class level. For example, the
shared exponent for BFP is computed and stored in the number
format class, and can directly be manipulated during an error
injection via scalar operations (similar to Methods 3 and 4). Since
the metadata can differ across number systems, we found this
implementation the most natural, and it allows the flexibility to
model the hardware to the level of detail required.

Currently, we provide support for 5 number formats as described
in §II-A, along with their tunable parameters. These generalizations
allow us to support many previous number formats (such as
bfloat and TensorFloat) as a parameter tuning of the base class
(FP). Further, new formats can be designed and incorporated as
described above by implementing the four pure virtual functions
with hardware-aware metadata support. We provide support for
single-bit injections across 8 different data types: data value bit flips
for all 5 number formats, in addition for metadata error injections
for INT, BFP, and AFP.

C. Tool Evaluation and Validation

We evaluate GoldenEye’s implementation overhead relative to
a non-instrumented, native execution of DL models in IEEE-754

3



0

0.5

1

1.5

2

AlexNet ResNet50 DeIT_tiny DeIT_base ViT_base

A
ve

ra
ge

 R
u

n
ti

m
e

 (
se

co
n

d
s)

FP32 (Native) FP (e8m23) FP (e8m7) FP (e8m7) - EI FxP (1, 16, 15) FxP (1, 16, 15) - EI INT8 INT8 - EI

INT8 - EI Metadata BFP (e4m7) BFP (e4m7) - EI BFP (e4m7) - EI Metadata AFP (e4m3) AFP (e4m3) - EI AFP (e4m3) - EI Metadata

FP      FxP INT8    BFP      AFP

Fig. 3: Runtime performance of GoldenEye, using different number formats and with error injection (EI) on/off.

FP32. We perform our measurements on an NVIDIA RTX 3060
GPU with 12 GB of memory with CUDA 11.4, using PyTorch
v1.10 and PyTorchFI v0.6.0. The rest of our system includes an
8-core Ryzen 5800x CPU with 64 GB of DDR4 RAM. We measure
the average inference runtime across 100 runs and using a flat batch
size of 32 across models. To showcase GoldenEye’s versatility
for model support, we include both CNNs and Transformers, and
measure vision classification accuracy on the ImageNet dataset [8].

Figure 3 shows the results. We execute each DNN model on 14
different number format configurations as shown. For each number
system, we include a GoldenEye implementation without any error
injection (purely number system emulation), an implementation
with a random, single-bit data value error injection (denoted EI),
and finally an implementation with a random, single-bit metadata
errors (denoted EI-metadata) for INT, BFP, and AFP. This setup
allows us to explore the overhead of both the number format
emulation as well as EI overheads.

Overall, we find the wall-clock runtime average for a batch size
of 32 to always be under 2 seconds on our system, with a standard
deviation across the 100 runs between 1%-4.5%. The native FP32
runtime is consistently the fastest (our baseline), as expected due
to its hardware acceleration. Furthermore, we find that the average
runtime for our emulated FP, FxP, and INT number systems are ex-
tremely similar to the native speed of silicon. For all number formats
explored, the overhead of error injections in values and metadata
are negligible, as the cost is amortized due to infrequent calls.

BFP and AFP show increased runtime overhead, sometimes as
high as a 5× slowdown. The primary reason for this slowdown
is that our current implementation for BFP and AFP is entirely in
Python. On the other hand, GoldenEye’s implementations for the
more traditional number formats (FP, FxP, and INT) uses the open-
source QPytorch [41] implementations, which is accelerated using
C++/CUDA. Porting BFP and AFP to C++/CUDA to take advantage
of hardware parallelization is on-going work, but we note that we
consider this dichotomy in performance a feature of GoldenEye: our
API is general and abstracts the underlying coding implementation.
Thus, new number formats can be prototyped and debugged quickly
in Python before eventual acceleration in C++/CUDA.1 Overall, we
found that all implementations are reasonably fast in practice, due
to the fast real-world performance of under 2 second inferences.

1PyTorch [30] went through a similar transformation in its history, where early
adoption was enabled due to its Pythonic nature, whereas today most of PyTorch
is written in C++/CUDA under the hood for performance.

TABLE I: Dynamic Range of Data Types

Absolute Absolute Range in dB
Data Type Max Value Min Value (20 log(Max/Min))

FP32 w/ DN 3.40e+38 1.40e-45 1667.71
FP32 w/o DN 3.40e+38 1.18e-38 1529.23
FxP (1, 15,16) 32768 1.53e-05 186.64
FP16 w/ DN 65504 5.96e-08 240.82
FP16 w/o DN 65504 6.10e-05 180.61

BFloat16 w/ DN 3.39e+38 9.18e-41 1571.34
BFloat16 w/o DN 3.39e+38 1.18e-38 1529.20
INT16 (symetric) 32767 0 90.31
INT8 (symetric) 127 0 42.08

FP8 (e4m3) w/ DN 240 1.95e-03 101.79
FP8 (e4m3) w/o DN 240 1.56e-02 83.73

AFP8 (e4m3) w/o DN 240 1.56e-02 83.73 (movable range)

We validate GoldenEye by employing a test suite to check
that conversions are implemented according to each number
format’s specification, including denormals (DN) where applicable.
For "traditional" formats such as FP32/FP16, we also compare
our emulated data formats (with and without injections) against
non-emulated inferences provided by PyTorchFI [24]. Table I lists
the dynamic range of the various data types studied, highlighting
that the varying dynamic ranges explored and emulated produce
results of statistical significance.

IV. USE CASES

In this section, we expand on three use cases for GoldenEye.
The first use case is a functional simulator for accuracy evaluation
of different number formats (§IV-A). Second, given our flexible
design and user interface, we introduce a basic heuristic for design
space exploration (DSE) of number format selection that is tuned
to a particular DNN model (§IV-B). Third, we use GoldenEye to
perform a fast resiliency analysis study, by leveraging recent work
on metric selection and exploring various error models (§IV-C).
Our goal here is to demonstrate multiple uses of the tool, and not
fully address the research challenges covered by each use case.

A. Functional Simulator for Accuracy
GoldenEye provides a unifying platform for measuring a DL

model’s accuracy as a function of the underlying number format.
Prior work in this space has typically required isolated (i.e., propri-
etary) simulation of number systems within different environments
(e.g., bfloat [18], efloat [4]). Minute implementation details could
lead to different accuracies, especially since DL models themselves
have lots of statistical variation. Thus, by open-sourcing GoldenEye
and providing a generic API for number format representation, we
envision future researchers and developers comparing models using
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Fig. 4: Accuracy measurements with GoldenEye.

a single underlying number format implementation. Furthermore,
GoldenEye provides tunable knobs to adjust a number system’s
parameters, such as bit-width and radix hyperparameters.

Figure 4 provides an example of this use case, comparing
ResNet18 [17] and DeIT-tiny [38] across different bitwidths (32, 16,
12, 8, and 4). One observation we find is that certain models react
differently to the same number format. For example, we find that
DeIT-tiny (a transformer) can maintain high accuracy at a decreased
bitwidth (FP e2m5) while ResNet18 cannot. This suggests that tun-
ing the number format to the DL model can provide improved perfor-
mance (via bitwidth and area reduction in the hardware) better than
a flat parameter choice (such as forcing an INT quantization across
the board as prescribed by TensorRT [39]). We also observe that
unlike FP, ResNet18 is able to maintain its original accuracy using
AdaptivFloat (AFP) at e2m5 suggesting that there are opportunities
to achieve accuracy robustness by considering an alternative number
format, especially one augmented with metadata. Note that we do
not perform any fine-tuning or re-training in any of these experi-
ments, and the results are purely from changing the number format.
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B. Domain Space Exploration

The second use case we study with GoldenEye is a domain space
exploration (DSE) for selecting number formats. While certain
number formats may "intuitively" work, the space of possible
formats grows extremely large due to parameter choices such as
bitwidth, radix, bias value, and others. With GoldenEye, we provide
a set of command line arguments for hyperparameter tuning, which
we extend with wrapper scripts to perform a DSE for number
format selection for a model.

We introduce an approximate and accuracy-preserving heuristic
for number format DSE using a recursive binary tree search. Figure 5
illustrates the algorithm. We first measure the baseline accuracy
by profiling the dataset using native FP32 support. Then, using
GoldenEye, we explore different number representations following
a tree structure for each number format parameter. The key idea
is to traverse the tree path (left vs right) based on the measured
accuracy (across the entire dataset) at each node, where our heuristic
aggressively chooses a shorter bitwidth and radix as long as the ac-
curacy is above a predefined threshold (e.g., 1% accuracy loss from
baseline). By logarithmically exploring the space, we can drastically
reduce the number of nodes explored, while producing multiple,
approximately accuracy-preserving nodes at lower precision.

Figure 6 illustrates our results, where the x-axis is ordered
according the nodes visited by our heuristic. We find that the
heuristic is complete after covering a maximum of 16 nodes (or less),
of which more than half suggest design points with an accuracy
above our acceptable threshold. Our results indicate that design
points differ based on the model being studied, and that different
number formats (e.g., BFP vs ADP) may traverse different nodes and
have different optimal configurations compared to their originally
inspired design (e.g., FP). BFP, for example, shows an accuracy
drop at various points because of a large shared block size across
an entire layer. Thus, the resolution of low magnitude numbers may
suffer, by being essentially rounded to zero. On the other hand, FxP
at lower bitwidths (e.g., FxP(1,4,4) at Node 13) seems to preserve
accuracy well for transformers, but its accuracy preservation differs
dramatically for CNN-based models (such as ResNet50). Our
heuristic further illustrates the approximate computing potential of
number formats, where a small degradation in model accuracy can
potentially lead to a large reduction in bit-width choice for a number
format (and, in turn, improve performance for an accelerator design).

Other potential DSE heuristics can be explored via GoldenEye’s
interface (e.g., a genetic search algorithm). By providing the right
level of abstraction, knobs, and runtime speed, this opens the door
for more research into choosing the best number format for a DL
model and/or hardware accelerator, especially as we envision the
number of DL number formats to increase over time.

C. Resiliency Analysis

Our third use cases explores GoldenEye as a resiliency analysis
tool. We focus on analyzing the resilience of BFP and AFP due
to space limitations, as multiple prior works have already explored
the reliability properties of DL models using FP [6], [22], FxP [13],
[31], and INT [25].

To measure model resilience to single bit perturbations, two
metrics have been recently proposed. The primarily used metric of
mismatches captures how many error-injected inferences resulted in
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Fig. 7: Resilience of BFP and AFP, by layer.

an output misclassification compared to an error-free inference [26].
On the other hand, the recently proposed ∆Loss metric [25]
suggests measuring the average absolute difference of the cross
entropy loss between the faulty and the error-free inferences
for resilience measurements. The work shows statistically that
the two metrics produce the same final result, however ∆Loss
asymptotically converges much faster due its continuous value
comparison (as opposed to the binary outcome comparison of
mismatch). GoldenEye supports both metrics, but we primarily use
∆Loss for the faster error injection campaigns, which complements
GoldenEye’s fast number format emulation.

We perform 1000 unique single-bit flip injections for each of data
and metadata at a layer-granularity using GoldenEye, measuring the
∆Loss for each layer. Figure 7 shows the results for ResNet50 and
DeIT-base, using BFP (e5m5) and AFP (e5m2). We find that layers
on average exhibit similar vulnerability in BFP with value injections,
since exponents are no longer part of the equation (Fig. 7a). Metadata
error injections, however, are much more egregious across the board,
particularly for BFP. This was expected, as a single bit flip behaves
as a multiple bit flip due to many reads of the faulty value. Through
additional analysis, we also find that the sign bit in BFP is more
vulnerable than in FP, since the bitwidth of the data value is now
shorter (by removing the exponent bits). Essentially, BFP magnifies
the importance of the sign bit via the shared exponent design.

That said, given that it is easier to protect one register rather than a
full tensor, BFP provides an attractive number format for low-cost re-
silience. Alternatively, we find that AFP on average (Fig. 7b) is more
resilient layer-wise than BFP for both value and metadata errors,
except for the last layer. This is because the last layer has a wider dis-
tribution, which makes it difficult for AFP to fully capture the range
of values and, correspondingly, increases the possible faulty value
range. While additional insights and data are required to fully charac-
terize the resilience of BFP and AFP, this paper is the first to explore
the resilience of these number formats, enabled by our versatile tool.

V. DISCUSSION

A. Tuning Accuracy, Resilience, and Bitwidth
As shown in §IV, at longer bitwidths, a number format may

overcompensate for both accuracy and resilience. However, when
tuning for hardware performance or efficiency, the number format
choice along with corresponding parameters (e.g., bitwidth, radix)
is critical, in addition to the algorithmic properties of the DL model
topology. As GoldenEye provides both accuracy and resilience
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analysis capabilities, we can combine multiple Use-Cases above
to explore the tradeoff between accuracy, resilience, and bit-width
(as a proxy for area and performance). This tuning can particularly
be helpful during early hardware-software co-design of accelerators
in the ML workflow, as depicted in Figure 8.

Figure 9 illustrates a tuning example for ResNet50, focusing on
BFP and AFP with a single-bit flip error model as described previ-
ously. We plot number formats suggested by our heuristic in §IV-B
with reasonable accuracy, and measure resilience as a single value
by averaging ∆Loss across all layers in a network (for both value
and metadata resilience). This is one possible method to capture re-
silience/sensitivity with a single value, but more research is required
to properly identify this summarizing metric. What we observe from
the figure is that there exists various, low-precision, high-accuracy,
and low ∆Loss design points in the top, left corner. Thus, depending
on the accelerator designers need, they can select the number format
which optimizes their budget requirements, potentially opting for
newer formats (such as AFP) with lower precision (e.g., e4m4).

B. Additional Features

While §III focuses on describing the technical underpinnings
which make GoldenEye fast and extensible, we also provide addi-
tional features to make it useful as a broad research tool, including:

• all layer types in PyTorch are supported by GoldenEye for num-
ber format emulation and error injection, with CONV and LIN-
EAR as defaults due to their computational intensity [16], [34].

• finer details of a number systems (such as denormal numbers)
are provided, and can optionally be disabled by the user for
value approximation opportunities [10].

• support for number format conversions and error injections
in both weights and neurons. We study neurons in this paper
as the more complex case, since weight injections can be
performed offline and do not need dynamic runtime support.
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• number format emulation is supported for training and
inference, as backpropogation is supported.

Additionally, we provide a toggle-able range detector for
resiliency analysis (enabled by default), modeled off of recent
work [5]. Note that some number formats (such as INT) require a
range to be provided for functional correctness [12]), absolving the
need for a range detector. More generally, GoldenEye can be used
for software-directed protection techniques (such as various forms of
duplication), making it a handy tool for additional resilience studies.

C. Current Limitations

GoldenEye is not a cycle-accurate simulator. Performance
measurements on real hardware cannot be directly extrapolated
and is not the intended environment for using GoldenEye. Users
can potentially use proxies such as number of MAC operations
and expected MAC area for runtime, but this is out of scope for
our design. GoldenEye does not negate the importance of cycle
accurate simulation before accelerator design [29].

GoldenEye also does not yet support mixed-precision operations,
which would require detailed attention to accumulation error and
rounding error during computations across different data types. This
is an interesting and valuable future direction we plan to pursue.
Additionally, while backpropogation is supported for number system
emulation, the current infrastructure does not support error injection
on gradients. This is another direction we plan to take GoldenEye
for modeling errors during model training, as described below.

D. Additional Use Cases and Future Directions

Beyond the use cases described in §IV, we foresee GoldenEye
also being a useful security analysis tool for DL attacks and
defenses. For example, GoldenEye can be used to simulate different
number formats for a given adversarial attack, and be used to
assess the attacks efficacy (or lack thereof). Evaluating a security
techniques robustness as a function of the underlying number
format and implementation is an interesting future direction.

Additionally, since GoldenEye can perform error injections
during the forward-pass in training, it can potentially be used
to build resilient models via novel training routines. Similarly,
exploring which number formats work well during training (such
as advertised by bfloat) versus inference (such as INT8) can push
development of a universally applicable number format for use in
both. Such explorations are also potential uses cases of GoldenEye.

VI. RELATED WORK

QPyTorch [41] is an open source library which provides support
for variable hyperparameter exploration for FP, FxP, and BFP.
GoldenEye leverages QPyTorch’s C++/CUDA implementations for
FP and FxP, which translates to native runtime performance during
inference. Further, QPyTorch supports backpropogation, which
can be extended to training with different number systems. We
found that the BFP implementation of QPyTorch, however, had two
primary drawbacks: 1) it did not allow for variable exponent sizes (it
was pegged at 8 bits), and 2) it had multiple implementation issues
in the number format implementation of BFP. Thus, in GoldenEye,
we used our own implementation for BFP, while simulataneously
ensuring it was generalizable and enable hyperparameter tuning
of the number system.
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TABLE II: Open-source tool comparison of related work.

BFP and AFP have recently been explored across multiple recent
works for hardware accelerator design [11], [35], [36], [40]. While
the concept of BFP is old (from the 1970s), its recent resurgence
is relevant as a performance optimization which also necessitates
a thorough resiliency analysis. With GoldenEye, we present a
framework for its assessment, and scratch the surface with basic
insights as presented in §IV. Similarly, AFP is a new number
system with major performance insights for Transformers. This
work also explores AFP resilience properties.

Many recent fault injection tools have been proposed for DL
resilience evaluation, particularly as DL perception, planning, and
control play a large and important part of safety-critical system
design [7], [24], [32]. However, most techniques leverage the slow
metric of mismatch counting for resiliency evaluation. By using the
concept of ∆Loss in GoldenEye, we aim to accelerate resiliency
analysis, while making sure the underlying number system is
properly represented. Finally, with the emergence of newer number
systems, the hardware-aware metadata is important to take into
consideration, which prior work has not explored. This unique
addition to GoldenEye is important for future reliability studies,
and in this work we provide a fast and seamless way to continue
modeling future number systems in a co-designed manner.

A qualitative comparison with related work is shown in Table II,
highlighting GoldenEye’s versatility. Notably, GoldenEye is the
only tool that provides wide support for multiple legacy and
emerging number formats along with a comprehensive framework
to evaluate their resilience at different numerical locations, including
the often neglected metadata.

VII. CONCLUSION

We introduce GoldenEye, an open-source, number format func-
tional simulator and error injection framework for DL models, im-
plemented in the PyTorch framework. Our feature-rich tool handles
many popular and emerging number formats, and provides tunable
hyperparameters for the exploration of number format design points
for DL model accuracy and resilience analysis. GoldenEye provides
an extensible and versatile toolbox for error injection support, includ-
ing for the first time, hardware-aware metadata modeling. Overall,
GoldenEye provides a unifying framework for number system
exploration and resilience studies, and has multiple use cases in
the domain of resilient accelerator design for deep learning models.
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