
Minotaur: Adapting Software Testing Techniques
for Hardware Errors

Abdulrahman Mahmoud
amahmou2@illinois.edu
University of Illinois at

Urbana-Champaign

Radha Venkatagiri
venktgr2@illinois.edu
University of Illinois at

Urbana-Champaign

Khalique Ahmed
kahmed10@illinois.edu
University of Illinois at

Urbana-Champaign

Sasa Misailovic
misailo@illinois.edu

University of Illinois at
Urbana-Champaign

Darko Marinov
marinov@illinois.edu

University of Illinois at
Urbana-Champaign

Christopher W. Fletcher
cwfletch@illinois.edu
University of Illinois at

Urbana-Champaign

Sarita V. Adve
sadve@illinois.edu

University of Illinois at
Urbana-Champaign

Abstract
With the end of conventional CMOS scaling, efficient re-
siliency solutions are needed to address the increased like-
lihood of hardware errors. Silent data corruptions (SDCs)
are especially harmful because they can create unacceptable
output without the user’s knowledge. Several resiliency anal-
ysis techniques have been proposed to identify SDC-causing
instructions, but they remain too slow for practical use and/or
sacrifice accuracy to improve analysis speed.

We develop Minotaur, a novel toolkit to improve the speed
and accuracy of resiliency analysis. The key insight behind
Minotaur is that modern resiliency analysis has many con-
ceptual similarities to software testing; therefore, adapting
techniques from the rich software testing literature can lead to
principled and significant improvements in resiliency analysis.
Minotaur identifies and adapts four concepts from software
testing: 1) it introduces the concept of input quality criteria
for resiliency analysis and identifies PC coverage as a simple
but effective criterion; 2) it creates (fast) minimized inputs
from (slow) standard benchmark inputs, using the input qual-
ity criteria to assess the goodness of the created input; 3) it
adapts the concept of test case prioritization to prioritize error
injections and invoke early termination for a given instruction
to speed up error-injection campaigns; and 4) it further adapts
test case or input prioritization to accelerate SDC discovery
across multiple inputs.

We evaluate Minotaur by applying it to Approxilyzer, a
state-of-the-art resiliency analysis tool. Minotaur’s first three
techniques speed up Approxilyzer’s resiliency analysis by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304050

10.3X (on average) for the workloads studied. Moreover, they
identify 96% (on average) of all SDC-causing instructions
explored, compared to 64% identified by Approxilyzer alone.
Minotaur’s fourth technique (input prioritization) enables
identifying all SDC-causing instructions explored across mul-
tiple inputs at a speed 2.3X faster (on average) than analyzing
each input independently for our workloads.

Keywords Hardware reliability; Resiliency analysis; Silent
data corruption (SDC); Fault tolerance; Software testing; Cov-
erage metrics; Input minimization and prioritization

ACM Reference Format:
Abdulrahman Mahmoud, Radha Venkatagiri, Khalique Ahmed, Sasa
Misailovic, Darko Marinov, Christopher W. Fletcher, and Sarita V.
Adve. 2019. Minotaur: Adapting Software Testing Techniques for
Hardware Errors. In 2019 Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’19), April 13–17, 2019,
Providence, RI, USA. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3297858.3304050

1 Introduction
As we approach the end of CMOS scaling, hardware is becom-
ing increasingly susceptible to errors in the field [14, 19, 27,
96, 111, 134]. Commodity hardware is used in systems with a
range of reliability requirements, from entertainment devices
to stringently safety-critical systems such as self-driving cars.
This hardware is also used at multiple scales, from small
embedded systems to large-scale high-performance comput-
ing systems where the sheer scale demands extremely low
failure rate for individual components. Traditional reliability
solutions, relying on indiscriminate redundancy in space or
time, are too expensive for such systems. Therefore, there
has been significant research in cross-layer solutions [22, 26]
that rely on the software layers of the system stack to provide
acceptable end-to-end system resiliency for hardware errors
at lower cost than hardware-only solutions [31, 32, 95, 134].

Early work recognized that a large majority of hardware
errors were either masked at the software level (i.e., they did
not change the output of the executing program) or resulted

https://doi.org/10.1145/3297858.3304050
https://doi.org/10.1145/3297858.3304050
https://doi.org/10.1145/3297858.3304050

in easily detectable anomalous software behavior (e.g., ex-
ceptions due to unaligned or out-of-bounds addresses) [29,
38, 50, 67, 89, 98, 120]. The former errors require no ac-
tion and the latter can be detected using zero to very low-
cost detection mechanisms. While such software-centric re-
siliency techniques show immense promise, unfortunately,
some hardware errors escape detection and result in unde-
tected and potentially unacceptable silent data corruptions
(SDCs) of the program output.

Such SDCs have been an obstacle in the widespread adop-
tion of software-centric resiliency techniques; therefore, sig-
nificant recent research has focused on characterizing and
reducing these SDCs either through hardware solutions (e.g.,
use of ECC in hardware memory structures) or software solu-
tions (e.g., insertion of software checks in application code
regions determined to be too vulnerable to SDCs) [9, 22, 30,
35, 48, 60, 66, 70, 73, 88, 92, 98, 113].

Underlying all of these solutions is the need for techniques
that find SDCs in the applications of interest. We use software
resiliency or just resiliency to mean the ability of a given piece
of software to avoid an SDC for a given hardware error. We
use resiliency analysis to mean the process of characterizing
the resiliency of a given piece of software for a given set of
hardware errors. We use resiliency hardening to mean soft-
ware modifications (with or without accompanying hardware
modifications) to make the software more resilient. This paper
concerns techniques for fast and accurate resiliency analysis.

Prior work in resiliency analysis imposes a significant
trade-off between speed and accuracy – statistical analy-
ses based on dynamic error-free execution traces or static
code [34, 68, 78, 80, 113] are unable to precisely model
error propagation paths; randomized error injection cam-
paigns [18, 54, 64, 109, 122] provide only statistical infor-
mation and are unable to predict resilience for code portions
where errors were not injected; and more systematic and com-
prehensive error-injection techniques [49, 107, 117] precisely
identify SDC-causing instructions but are much slower than
the previous techniques. Section 7 describes prior work in
more detail.

This paper presents Minotaur, a toolkit that improves the
speed of resiliency analyses while also precisely identifying
more SDC-causing instructions (program counters) or SDC-
PCs. The novel insight behind Minotaur is that analyzing
software for resiliency to hardware errors is similar to testing
software for software bugs; therefore, adapting techniques
from the rich software testing literature can lead to principled
and significant improvements in resiliency analysis. Mino-
taur can benefit many resiliency analysis techniques; here we
evaluate it by applying it to the state-of-the-art Approxilyzer
tool [116, 117].

We identify, adapt, and evaluate four bridges between soft-
ware testing and resiliency analysis:
Concept 1: Test-Case Quality → Input Quality. A key
concept in software testing is test-case (input) quality; i.e.,

an input’s effectiveness in finding bugs in the target soft-
ware. Several input quality criteria have been proposed in the
literature, typically at the source-code level, with statement
coverage as a simple and widely used criterion (Section 2.1.1).
Resiliency analysis typically uses generic inputs often devel-
oped for performance evaluation; e.g., the reference inputs in
benchmark suites. These generic inputs could be sub-optimal
for discovering code vulnerable to SDCs, but there is no ac-
cepted input-quality criterion for resiliency analysis.

This work introduces the notion of input-quality criteria
for resiliency analysis, adapts several widely used software
testing criteria to the object-code level, and evaluates these
criteria for resiliency analysis. We find that program counter
(PC) coverage, an analog of the widely used statement cov-
erage, is an effective input-quality criterion for resiliency
analysis. Intuitively, PC coverage measures the fraction of
assembly instructions executed for a given input.
Concept 2: Test-Case Minimization → Input Minimiza-
tion. Test-case minimization for software takes a high quality,
expensive/slow test and creates a cheaper/faster test with sim-
ilar high quality. Minotaur adapts minimization to resiliency
analysis by creating minimized inputs (referred to as Min) that
are smaller and execute faster than, but have similar quality
as, the reference inputs (Ref).

We apply minimization to seven benchmarks and show that
using Min instead of Ref speeds up resiliency analysis by 4.1X
on average. Min also finds 96% of all SDC-PCs identified by
either Ref or Min. However, Ref only finds 64% of these SDC-
PCs. This surprising result that Min is more accurate1 than
Ref parallels recent work from the software testing literature
on bug detection [40]. Intuitively, Min can improve accuracy
because it can be analyzed more comprehensively due to the
improved analysis speed, whereas Ref can be prohibitively
expensive to analyze in its entirety [49, 117].
Concept 3: Test-Case Prioritization → Error-Injection
Prioritization. Test-case prioritization for software system-
atically prioritizes test cases to find critical software failures
as early as possible. Minotaur adapts test-case prioritization
in two ways—prioritization of error injections for a given PC
with a given input (Concept 3) and prioritization of inputs
(Concept 4). In both cases, once a PC is found to generate
an SDC, no further error injections are performed on that PC
because it needs to be hardened anyway.

We explore several priority orderings for error injections for
a given PC. Surprisingly, we find that random ordering reveals
SDCs almost as quickly as an oracular best case. Further
investigation shows that an SDC-PC often produces SDCs

1The accuracy of a binary classifier is typically measured as the ratio
of the identified true positives (SDC-PCs for our case) and true negatives
relative to the total population with known outcomes. We focus only on the
identification of SDC-PCs and assume Approxilyzer’s error-injection based
methodology results in no false positives. Therefore, we measure accuracy
of Min (or Ref) as the ratio of SDC-PCs identified by Min (or Ref) relative
to all the known SDC-PCs; i.e., the union of the SDC-PCs identified by Min
and Ref. With this interpretation, accuracy is equivalent to recall [45].

for a very large number of its injections; therefore, a random
ordering quickly finds one such injection. The combination
of random ordering and termination of injections on a PC
after an SDC discovery, combined with input minimization,
provides an average 10.3X speedup (up to 38.9X) in resiliency
analysis time by employing Minotaur.
Concept 4: Test-Case Prioritization → Input Prioritiza-
tion. We also adapt test-case prioritization across multiple
inputs. To find SDC-PCs as fast as possible, we prioritize
resiliency analysis on the faster Min input over the slower
Ref input. Then, for higher accuracy, we can additionally
perform resiliency analysis on the larger Ref input, but only
for the PCs not already classified as SDCs by Min. This pri-
oritization of inputs for resiliency analyses results in finding
the union of SDC-PCs across both inputs, while running on
average 2.3X faster than analyzing both inputs independently
in their entirety.

To summarize, Minotaur shows, for the first time, that
leveraging software testing concepts for resiliency analysis
enables principled and significant benefits in speed and accu-
racy. While our evaluation uses Approxliyzer as the underly-
ing resiliency analysis, Minotaur and its concepts apply more
generally (Section 7). For example, Concepts 1 and 2 can
be applied to speed up any dynamic resiliency analyses that
typically study large inputs, by producing a smaller represen-
tative input for analysis. Error-injection analyses can greatly
benefit from Concept 3, by prioritizing error-injections and
employing early termination for SDC-PCs. Concept 4 can
propel resiliency analyses to explore multiple inputs, a new
direction which previously was daunting due to speed and
accuracy concerns of existing techniques. Minotaur provides
a foundation for a systematic methodology for efficient re-
siliency analysis based on software testing, and opens up
many avenues for further research.

2 Background
This section provides an overview of the relevant software test-
ing techniques adapted by Minotaur and of Approxilyzer [117].

2.1 Relevant Software Testing Techniques
Software testing is the process of executing a program or
system with the intent of finding failures [81]. The objective
of testing can be quality assurance, verification, validation, or
reliability estimation. We discuss some techniques and best
practices adopted by the software testing community.

2.1.1 Test-Case Quality
In software testing, a test case is an input and an expected
output used to determine whether the system under test satis-
fies some software testing objective. A test set is a collection
of test cases. The number of all test cases can be intractably
large. Thus, selecting appropriate test cases has a significant
impact on testing cost and effectiveness. Test cases are se-
lected by evaluating them using quality criteria relevant to the
testing objectives.

Figure 1. A classification of error outcomes [117]. Only out-
comes of SDC-Bad and SDC-Maybe constitute SDC-PCs.

Selecting a quality criterion involves a tradeoff. A
“stronger” criterion enables closer scrutiny of program be-
havior to find bugs, while a “weaker” criterion can be fulfilled
using fewer test cases [93]. The choice of criterion depends
on several factors, including the size of the program, cost
requirements, and criticality of failure. Some popular crite-
ria [93], ordered from weaker to stronger, are: (1) statement
coverage [7], which measures the fraction of program state-
ments executed by tests; (2) branch coverage [81], which
measures the fraction of branch edges executed; and (3) def-
use coverage [37, 93], which measures the fraction of pairs
of variable definitions and their corresponding uses executed.
Despite being a weak criterion, statement coverage is typ-
ically used for testing commercial software due to its low
resource overheads. Branch coverage is often used for safety-
critical systems [36]. The software testing literature provides
an extensive analysis of various testing criteria [7].

2.1.2 Test-Case Minimization
While running larger (or more) test cases is desirable for
thorough testing, time and resources limit the size (or num-
ber) of test cases that can be executed. Test-case minimiza-
tion is used to minimize the testing cost in terms of execu-
tion time [6, 39, 40, 94, 130–132]. The goal is to generate a
smaller test case that has similar or (ideally) the same quality
as the original test case; e.g., covers the same statements.

2.1.3 Test-Case Prioritization
Resource constraints can sometimes make it infeasible to
execute all planned test cases. It thus becomes necessary to
prioritize and select test cases so that critical failures can
surface sooner rather than later [130]. Test-case prioritization
techniques schedule test cases in an order that allows the
most important tests, by some measure, to execute first. For
example, test-cases can be prioritized by their coverage. Many
test-case prioritization techniques have been proposed in the
literature [130].

2.2 Approxilyzer
We evaluate Minotaur using Approxilyzer [116, 117], a state-
of-the-art instruction-level resiliency analysis tool that is fine-
grained (it identifies individual SDC-PCs) and comprehensive
(it analyzes nearly all instructions). Approxilyzer uses a com-
bination of program analysis and error injections to determine

Input Quality
Checker

Application
Input

Input Quality Target
(Criterion + Threshold)

Minimizer

Minimization Objective

Input Constraints

Input Selector
Resiliency Analyzer

APPROXILYZER

Resiliency Analysis
Output

1 2 3 4

Error-injection prioritization1 Input quality Input minimization Input prioritization3 42

Input Prioritization
Objective

Figure 2. Overview of Minotaur. Approxilyzer may be re-
placed with another resiliency analyzer.

the outcome of a single-bit transient hardware error occur-
ring during the execution of any dynamic instruction—in any
source or destination register bit of the instruction—of the
given program and its input. We use error site to refer to
the combination of the dynamic instruction instance and its
register bit that incurs the error.

Approxilyzer dramatically reduces the number of required
error injections to predict the error outcome for all applica-
tion error sites for a given input. It systematically analyzes
all error sites, and carefully picks a small subset to perform
selective error injections. It uses novel error-site pruning tech-
niques (pioneered by Relyzer [49]) to reduce the number
of error-sites needing detailed study, either by predicting
their outcomes or showing them equivalent to other errors.
To prune error sites, Approxilyzer partitions error sites into
equivalence classes such that the error outcome ofa single
representative of each class is needed to predict error out-
come for all error sites in the class. However, it is still slow,
requiring millions of error injections for standard benchmarks
with reference inputs [117]. Past studies, therefore, performed
error injections only for the classes that contain 99% of the
error sites (sorted by equivalence class size), referred to as
99% error-site coverage—analyzing the last 1% was deemed
too expensive, because it can involve many more classes and
would require many more error injections [49, 117].

Approxilyzer distinguishes error-injection outcomes as
masked, detected, or output corruptions (OCs). While most
prior work considers all OCs as SDCs, Approxilyzer analyzes
the quality (degradation) of the corrupted outputs to further
differentiate between output corruptions that are tolerable to
the user from those that are not. A comprehensive list of error
outcomes follows, also summarized in Figure 1:

• Detected: An error that raises observable symptoms and
can hence be caught using various low-cost detectors [98]
before the end of execution.
• DDC: An OC that is detectable via low-cost mechanisms

such as range detectors applied on the output [48].
• SDC-Bad: An OC with very large (unacceptable) output

quality degradations.
• SDC-Maybe: An OC that may be tolerable if the output-

quality degradation is within a user-provided acceptability
threshold (if no threshold is provided, all SDC-Maybe’s
default to SDC-Bad).

// INPUT: c = True

// Source. 100% Statement Coverage

1. v = c ? E1 : E2 // covered

// Assembly. 75% PC Coverage

PC-1. beq c, $0, L2 # covered

L1: PC-2. move v, E1 # covered

PC-3. jump L3 # covered

L2: PC-4. move v, E2 # not covered

L3: …

Figure 3. Statement coverage vs. PC coverage.

• SDC-Good: An OC that produces negligibly small (and
acceptable) output quality degradations.
• Masked: Errors that produce no output corruption.

To identify an SDC-PC, Approxilyzer examines the error
outcomes for all error sites in a given static PC. If even a single
error site results in an unacceptable outcome (SDC-Bad or
SDC-Maybe for quality degradations outside the acceptability
threshold), the PC is classified as an SDC-PC. Because SDC-
Good outcomes are tolerable, their error sites do not need
hardening and do not contribute to SDC-PCs.

3 Minotaur
This section describes Minotaur, a novel toolkit for principled
and efficient resiliency analysis for hardware errors. Figure 2
illustrates the complete system.

3.1 Input Quality
Ensuring that "good" quality inputs are used for resiliency
analysis increases the effectiveness of the analysis. We adapt
the concept of test-case quality (Section 2.1.1) to build an
Input Quality Checker (Figure 2) that measures the quality of
the inputs used for resiliency analysis.

The software test quality criteria are typically expressed
at the source-code level, to make it easier for developers
to understand what is covered and what is not. There has
also been some work on test coverage at the object-code
level [13, 17], but it is not widely studied. Our resiliency
analysis examines error models at the object code level and
aims to find assembly instructions that are vulnerable to SDCs
(SDC-PCs). Hence, it is desirable to measure the quality of
the input used for resiliency analysis with quality criteria
expressed at the object code.

Figure 3 demonstrates the difference between using input
quality criteria at the source vs. object code level. Suppose a
ternary operator is used by the developer, such as in Line 1.
Assuming a value of True for the variable c, statement cover-
age (Section 2.1) of the source code measures that this single
input will cover (execute) 100% of the code. However, for
the same code compiled to assembly, only 75% of the instruc-
tions are covered (executed). Analyzing resiliency with just
this input does not provide full (100%) assembly instruction
coverage, and an error in assembly instruction PC-4 would
not be captured.

For resiliency analysis, we adapt three test (input) qual-
ity criteria to the object code level—statement, branch, and
def-use coverage. The analog of statement coverage at the
object code level measures the fraction of static assembly
instructions (or PCs) executed by the input; we call it simply
PC coverage. Branch and def-use coverage are analogously
adapted from the source to the object code level to consider
assembly-level branches and def-uses pairs, respectively.

The Input Quality Checker (Box 1 in Figure 2) evaluates
whether a given input meets the desired quality threshold (e.g.,
90%) for a specified quality criterion (e.g., PC coverage). We
refer to the combination of the input quality criterion and the
threshold as the input quality target.

3.2 Input Minimization
Minimizing the input size can greatly speed up the resiliency
analysis by reducing the time for each error-injection exper-
iment and/or reducing the total number of error injections
needed. Using insights from test-case minimization, we de-
signed a systematic technique, a Minimizer (Box 2 in Fig-
ure 2), that Minotaur uses to generate a minimal input, Min,
provided a reference input, Ref.

There is no general algorithm to minimize inputs across all
application domains in software testing [7]. Our Minimizer
algorithm is specialized for our workloads. Given a Ref, the
goal of the Minimizer is to find a reduced input (Min) that
minimizes a stated minimization objective (MinObj) (e.g.,
execution time) while satisfying an input quality target (e.g.,
90% PC coverage relative to Ref). We chose a simple, greedy
algorithm based on binary search for the Minimizer and found
it effective. More sophisticated optimizers may find better
Min inputs; we leave such an exploration to future work.

In addition to the minimization objective and input qual-
ity target, the Minimizer is provided with the list of input
parameters (e.g., command line and other program-specific
parameters) and a set of parameter constraints (e.g, range
or boundary conditions) to ensure that the Min generated is
both legal and realistic. A realistic Min enables the resiliency
analysis to uncover SDC-PCs that are vulnerable for realis-
tic conditions, avoiding over- or under-protection. Domain
knowledge enables understanding the realistic range of in-
put values and how to change them (e.g., choosing image
shrinking instead of sub-sampling pixels or subsetting image
inputs [58]) to achieve realistic inputs.

Algorithm 1 shows the pseudo-code of Minotaur’s Mini-
mizer. It first performs a pre-processing pass over the refer-
ence input’s parameter list and orders the parameters accord-
ing to their estimated impact on the minimization objective.
Our current implementation determines this order by running
the program with a few different values for each input param-
eter and measuring the impact on the minimization objective.
This step can be accelerated with additional domain knowl-
edge or automated using more sophisticated optimizers.

Given the ordered parameter list, the Minimizer uses binary
search to progressively change each input parameter (one with

Algorithm 1: Input Minimization Pseudocode
1 PList : Parameter List, C: Constraints,
2 IQT : Input Quality Target, MinOb j: Minimization Objective,
3 PListRe f : Reference input’s PList
4 Function Minimizer(PListRe f , C, IQT, MinOb j):
5 PList← OrderParams(PListRe f , MinOb j)
6 for param ∈ PList do
7 lower←Minimum value of param provided C
8 upper← Reference value of param
9 PList[param]←

BinarySearch(lower, upper, C, IQT)
10 end
11 return PList
12 Function OrderParams(PList, MinOb j):
13 return Ordered parameters of PList with respect to

MinOb j
14 Function BinarySearch(lower, upper, C, IQT):
15 Search values between lower and upper provided C,
16 checking if the candidate value satisfies IQT
17 return minimum value that satisfies IQT

highest impact on the minimization objective first) while en-
suring that the new input value meets the input quality target.
Lines 6–10 of Algorithm 1 show this search for applications
with (1) numeric inputs and (2) where reducing the value of
input parameters reduces (or does not affect) the minimiza-
tion objective. All applications we study (except Sobel, which
takes as input an image) satisfy both characteristics, with
binary search sufficing for the value exploration. We reduce
images for Sobel using the resize utility in the ImageMagick
suite [69], which accepts a numerical argument, adapting the
binary search to adjust this argument. Similarly, other applica-
tion domains could also require appropriate adaptation of the
algorithm. At the end of this process, the Minimizer outputs
the final parameter list for the minimized input.

3.3 Error-Injection Prioritization
We next use insights from test-case prioritization to improve
resiliency analysis for any input (minimized or not). We eval-
uate error-injection prioritizations that order error injections
for a PC such that error sites which are more likely to be SDC-
causing are examined earlier. Once an injection reveals an
SDC, Minotaur does not perform injections for any other error
sites for that PC. Hence, error-injection prioritization can lead
to early termination of error-injection campaigns, leading to
significant savings. Box 3 of Figure 2 shows the application
of error-injection prioritization in Minotaur’s workflow.

We study the following ordering schemes for error-
injection prioritization to understand which error sites result
in SDCs:

• Bit position of registers (BitPos): Injecting into specific
bits first (such as the MSB or LSB).

• Dynamic instance of error site (DI): Error sites from an
earlier dynamic instance may be more prone to SDCs than
later dynamic instances.
• Register type (RT) – integer vs. floating point: Cer-

tain register types could be more susceptible to SDCs
than others.
• Operand kind (OP) – source vs. destination: Prioritizing

source vs. destination register may also show a pattern for
SDC-causing instructions.
• Equivalence class size (ECS): This ordering is specific

to Approxilyzer and prioritizes injections in error sites
of largest equivalence classes first, which is the default
ordering used by Approxilyzer to maximize the number of
error sites with predicted outcome for a given number of
total error injections.
• Random ordering: Error sites are chosen at random.

3.4 Input Prioritization
Mission-critical applications with high resiliency require-
ments must undergo analysis using multiple inputs to build
confidence that most SDC-PCs in the application have been
identified. To that end, a naïve, but prohibitively expensive,
scheme could analyze many inputs in their entirety to find
all SDC-PCs in an application. Instead, we adapt test-case
prioritization from software testing in the form of input prior-
itization to speed up resiliency analysis for multiple inputs.

In our scheme, an Input Selector (Box 4 in Figure 2)
chooses inputs for resiliency analysis according to an order
specified by an input prioritization objective. We choose to
analyze the input with the shortest execution time, prioritizing
faster analyses first (e.g., we choose Min before Ref). Input
prioritization can lead to faster resiliency analysis speed for
each subsequent input because the PCs already identified as
SDC-PCs by prior inputs need not be (re)analyzed. Thus, we
can leverage input-prioritization to find many of the SDC-
PCs from one (faster) input, and carry this information onto
another (slower but larger) input to avoid unnecessary error
injections. Minotaur’s Input Selector can successively select
inputs for resiliency analysis until it meets an analysis target
(e.g., a coverage or resource target).

4 Methodology
4.1 Evaluation Infrastructure and Workloads
Our error-injection infrastructure builds on Approxi-
lyzer [117], based on simulation using Wind River Sim-
ics [119] and GEMS [72] running OpenSolaris. Our work-
loads are compiled to the SPARC V9 ISA with all optimiza-
tions enabled.

Approxilyzer’s error model uses single-bit architecture-
level errors (Section 2.2), which are a limited but effec-
tive [104] and realistic subset of hardware errors [24]. With re-
siliency becoming a first-class software design objective [10],
techniques with different speed, precision, and error models

are needed at different stages of software development. Eval-
uating Minotaur with tools that use different error models
(lower-level, multi-bit, etc.) is part of our future work.

To evaluate Minotaur, we use seven workloads from three
benchmark suites spanning multiple application domains,
summarized in Table 1. Column 4 lists the reference (Ref) in-
put parameters used in our study. For five of the benchmarks—
Blackscholes, Swaptions, LU, Water, and FFT—we use the
same inputs as Approxilyzer [117] for the reference inputs.
For Streamcluster, prior evaluations [75, 110] showed that
the benchmark benefits from realistic datasets (as opposed to
data points generated internally by the application); hence,
we use a dataset from the UCI Machine-Learning Reposi-
tory [28, 52, 99] as its Ref input. For Sobel, we use the bird
image from the iACT [76] repository as input. We chose rela-
tively small Ref inputs for almost all applications to be con-
servative and not over-estimate the benefits of input minimiza-
tion. To evaluate the quality of the outputs, we use the same
metrics as Approxilyzer [117] for Blackscholes, Swaptions,
LU, Water, and FFT; for Streamcluster and Sobel, we use max-
imum relative error (max-rel-err from Approxilyzer [117]).

Evaluating Minotaur using the above workloads involved
performing over 8.4 million error-injection experiments span-
ning approximately seven weeks of simulation time on a
200-node cluster of 2.4GHz Intel Xeon processors.

4.2 Input-Quality Criteria
Since no available tool can easily measure test coverage at the
object-code level, we developed our own tools using dynamic
traces from Simics [119] for PC, branch, and def-use coverage
for the object code. For PC coverage, we simply track the
PCs executed by the input. For branch coverage, we store the
unique branch-target PC pairs that represent control edges
exercised by the input. For def-use coverage, we analyze the
definition and use of operand registers exercised by the input,
and store unique PC pairs that represent a def-use edge. For
all criteria, we measure Min’s coverage relative to Ref.

4.3 Input Minimization
Minotaur uses application run time as the minimization ob-
jective and targets 100% PC coverage (relative to Ref) as the
input quality target when possible. We measure PC, branch,
and def-use coverage for each Min relative to its correspond-
ing Ref; e.g., if Min executes all PCs executed by its Ref,
we consider it to have 100% PC coverage. Similarly, if Min
exercises all branch-target and def-use pairs exercised by Ref,
we consider it to have 100% branch and def-use coverage,
respectively.

We choose PC coverage as our quality criterion because it
is simple and fast to compute and it is the analog of the widely
used statement coverage criterion for software testing (Sec-
tion 2.1.1). We find that the Min inputs generated using PC
coverage are surprisingly effective (Section 5.1.3), and also
exhibit high (but not perfect) branch and def-use coverage.

Suite Application Domain Ref Input Min Input PC (%) Branch (%) Def-Use (%)
Parsec 3.0 [12] Blackscholes [12] Financial Modeling 64K options 21 options 100 100 99.38

Swaptions [12] 16 options 1 option 99.91 99.23 98.42
5000 simulations 1 simulation

Streamcluster [12] Data Mining centers = [10,20] centers = [4,5] 99.97 99.77 98.67
num iterations = 3 num iterations = 1

SPLASH-2 [124] LU [124] Scientific Computing 512x512 matrix 16x16 matrix 100 100 95.56
16x16 block size 8x8 block size

Water [124] 512 molecules 216 molecules 99.89 99.36 99.85
FFT [124] Signal Processing 220 data points 28 data points 100 100 99.59

ACCEPT [101] Sobel [101] Image Processing 100% image size 25.25% image size 100 100 100
(321x481 pixels) (81x121 pixels)

Table 1. Applications studied and key input parameters (the ones that changed during minimization) for Ref and Min. The last
three columns show the coverage of Min relative to Ref for different input quality criteria.

4.4 Accuracy Analysis
Minotaur uses input minimization to generate a Min that
is a good representative of a Ref. We quantify Minotaur’s
accuracy for a given input as the fraction of SDC-PCs found
by the input (either Min or Ref) relative to the total number
of SDC-PCs found by the union of both inputs.

To understand the sources of inaccuracy, we analyze the
SDC-PCs identified by Min and Ref by grouping them into
categories based on whether they were found by Ref, Min, or
both. We further distinguish the cases where certain PCs are
explored (i.e., analyzed for resiliency) by one input but not
both inputs. The difference occurs when the targeted error-
site coverage (Section 2.2) is less than 100% and Minotaur
chooses different PCs to meet that coverage for the two dif-
ferent inputs. We use the term explore to convey that at least
one error site for a PC was analyzed (for a given input) by
Minotaur. If no error site for a PC was analyzed (for a given
input), we say that the PC was not explored by the input. Note
that not explored does not mean not executed by the input; it
simply means that the PCs were not analyzed for resiliency.

We group the SDC-PCs into five categories:

1. Common: Both Min and Ref classify the PCs as SDC,
which are considered accurately classified by both.

2. MinSDC: Min classifies these as SDC-PCs and Ref ex-
plores them but does not classify them as SDC-PCs. Al-
though Ref did not find these SDC-PCs, they are still candi-
dates for hardening because they were found by a realistic
Min input. Hence, these PCs are considered accurately
classified by Min, but not by Ref.

3. MinSDC+: Min classifies these as SDC-PCs and Ref does
not explore them. For similar reasons as MinSDC, this
category is also considered accurately classified by Min,
but not by Ref.

4. RefSDC: Ref classifies these as SDC-PCs and Min ex-
plores them but does not classify them as SDC-PCs. These
PCs are inaccurately classified by Min because relying
only on Min’s analysis would leave these PCs unprotected.

5. RefSDC+: Ref classifies these as SDC-PCs and Min does
not explore them. This category is also considered inaccu-
rately classified by Min.

The error-injection prioritization scheme (Section 4.5) does
not affect accuracy because it finds the same set of SDC-PCs
for an input as without the optimization, albeit faster. Employ-
ing the input-prioritization scheme for all inputs (Section 4.6)
will result in 100% accuracy since input-prioritization obtains
the union of SDC-PCs found by analyzing all inputs (while
optimizing resiliency analysis speed).

4.5 Error-Injection Prioritization
We explore 38 different error-injection prioritizations using
combinations of the schemes from Section 3.3. For BitPos, DI,
and ECS schemes, we test both ascending (A) and descending
(D) ordering. We also explore compositional schemes. For
example, BitPos_A + ECS_D first orders error injections by
bit positions in ascending order (i.e., starting with the LSB),
followed by ordering in descending equivalence class size.
For RT and OP schemes, we simply pick the type/kind of
register (e.g., OPSrc or OPDest) to prioritize.

To understand the bounds on the error-injection priori-
tization gains, we also run an Oracle best and worst case.
The best case assumes that the Oracle identifies an SDC-PC
with a single injection. For the worst case, the Oracle picks
(for each PC) all injections that are not SDC-causing before
picking an SDC-causing injection, reducing the benefit of
early termination.

4.6 Input Prioritization
Our Input Selector prioritizes (faster) Min over Ref. Section 5
shows that while Min exhibits high accuracy (Section 4.4), it
misses a small number of SDC-PCs found only by Ref. To
achieve 100% accuracy, resiliency analysis on Ref is run after
resiliency analysis on Min completes, but only for PCs that
Min did not find as SDCs (Section 3.4).

4.7 Runtime Analysis of Minotaur
We evaluate the time that Minotaur takes to perform resiliency
analysis on a single input. The Input Quality Checker, Mini-
mizer, and Input Selector (boxes 1, 2, and 4 in Figure 2) take
negligible time compared to the resiliency analysis (Approx-
ilyzer) time (box 3); therefore, we focus on the resiliency
analysis component.

Ideally, the runtime performance would be measured di-
rectly by measuring all components of Approxilyzer and every
error injection. However, this cannot be done precisely on a
busy cluster which introduces variability between runs. We
estimate the total runtime by measuring statistically sampled
error injections and using formulas as follows.

The time for resiliency analysis for a given application and
input (Ref or Min) depends on: (1) equivalence class genera-
tion time (tequiv_class_gen) [49, 117], (2) total injections of each
outcome category (Imasked , Idet , IOC) for a target error site cov-
erage, and (3) the average error-injection runtime of each out-
come category (tmasked , tdet , tOC). We measure the runtime for
each category separately because it can be quite different; e.g.,
an OC error requires additional post-processing (compared to
Masked) to quantify the error quality into Good/Maybe/Bad
categories, while Detected outcomes involve simulator and
OS overhead to report outcomes such as SegFaults.

We measure the runtime by sampling 1,000 error-injection
experiments for each of masked, detected, and OC outcomes
per application and input, excluding outliers in the top and bot-
tom 2.5% of runs. The total samples correspond to a 99.8%
confidence level with 5% error margin in timing measure-
ments [59]. The time for resiliency analysis is calculated as:

TotalRuntime = tequiv_class_gen+Σn
(
In× tn

)
(1)

where each outcome type n ∈ {masked,det,OC} is weighted
by the number of injections with that outcome and average
injection runtime for that outcome.

In practice, error injections (the second term of Equation 1)
dominate the total runtime of resiliency analysis. Thus, even
though tequiv_class_gen is much shorter for Min (order of min-
utes) compared to Ref (order of hours), it is negligible com-
pared to the total time of injection experiments.

All runs for Ref and Min begin with a checkpoint at the
start of the region of interest (ROI), generally provided by the
benchmarks, to avoid simulator startup cost and application
initialization overhead. We break down the measurements into
two components: the application runtime only inside the ROI,
and the remaining runtime from the end of the ROI to the in-
jection outcome. The latter runtime includes simulation over-
heads, various file I/O, and analysis of the application output.

5 Results
We evaluate Minotaur’s impact on a resiliency analysis tool,
Approxilyzer [117], by analyzing (1) the speedup and accu-
racy from a minimized input (Min) for resiliency analysis
(Section 5.1); (2) the speedup from error-injection prioritiza-
tion with early termination (Section 5.2); (3) the combined
speedup from minimization and error-injection prioritization
(Section 5.3); and (4) the speedup from applying input priori-
tization across multiple inputs (Section 5.4).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
e

la
ti

ve
 N

u
m

b
e

r
o

f
In

je
ct

io
n

s

95% Error Sites 98% Error Sites 99% Error Sites 100% Error Sites

R M R M R M R M R M R M R M R M

B
la

ck
sc

h
o

le
s

Sw
ap

ti
o

n
s

LU FF
T

W
at

e
r

St
re

am
cl

u
st

e
r

So
b

e
l

A
ve

ra
ge

Figure 4. Number of error injections for different error-site
coverage targets for each benchmark, relative to 100% error-
site coverage for Ref (Ref100). R=Ref, M=Min.

5.1 Input Minimization
5.1.1 Min Quality
Table 1 shows the Min generated by applying Algorithm 1
to each Ref, using PC coverage as the input quality criterion.
Most applications show a large reduction of input parameter
values in Min (column 5), which translates to faster applica-
tion runtimes relative to Ref (Section 5.1.2).2 Additionally,
Min maintains very high PC coverage relative to Ref (column
6), which translates to high accuracy in finding SDC-PCs
(Section 5.1.3).

Not all workloads achieve a significant application speedup
with the input quality threshold set to 100%. Slightly reducing
the threshold by less than a percent, however, results in sub-
stantially higher minimization for Swaptions, Streamcluster,
and Water. We show that the PC coverage reduction does not
impact Min’s accuracy significantly (Section 5.1.3), while
allowing Minotaur to benefit from running the faster Min
(Section 5.1.2).

The last two columns of Table 1 show the branch and def-
use coverage of the generated Min (relative to Ref) and are
discussed further in Section 5.1.4.

5.1.2 Minimization Speedup
Min typically runs faster than Ref because it has fewer dy-
namic instructions, resulting in fewer error injections and a
shorter runtime per injection.

Figure 4 shows the total number of error injections needed
for resiliency analysis for an application, relative to analyzing
100% of Ref’s error sites (Ref100). Past studies found that
targeting 100% error-site coverage was too expensive and so
targeted just the top 99% of error sites (Ref99), as discussed
in Section 2.2. By using input minimization, achieving 100%

2Many of our Ref inputs are themselves relatively small; higher benefits
are likely with larger Ref inputs.

0

0.2

0.4

0.6

0.8

1

R
e

la
ti

ve
 R

u
n

ti
m

e
 (

n
o

rm
al

iz
e

d
)

Application Run Time Simulation OverheadRuntime

R M R M R M R M R M R M R M R M

B
la

ck
sc

h
o

le
s

Sw
ap

ti
o

n
s

LU FF
T

W
at

e
r

St
re

am
cl

u
st

er

So
b

e
l

A
ve

ra
ge

Figure 5. Average runtime per injection, normalized to Ref.
Each set of three bars represents (from left to right) Masked,
Detected, OC runtime (Section 4.7), divided into application
runtime and simulation overhead. R = Ref and M = Min.

error-site coverage is no longer elusive for many applica-
tions. Figure 4 shows that for the Min inputs of Blackscholes,
Swaptions, LU, and FFT, the number of error injections re-
quired for 100% error site coverage (Min100) is comparable
to the number of error injections for Ref99 Thus, for these
applications, it becomes tractable to run resiliency analysis
with Min100. The other applications (Water, Streamcluster,
and Sobel) also reduce the number of error injections from
Ref100 to Min100, but the total number is still very large,
presenting a trade-off between resiliency-analysis runtime
and error-site coverage. We choose to favor runtime and use
99% error-site coverage for these applications. Henceforth,
we use the umbrella term Min (unless otherwise stated) to
encompass Min100 for Blackscholes, Swaptions, LU, and
FFT, and Min99 for Water, Streamcluster, and Sobel. We use
Ref to refer to Ref99 for all applications.

Not only does Min require fewer error injections for most
of our workloads, each individual injection runs faster com-
pared to Ref. Figure 5 shows the average runtime per injection
for Ref and Min for different outcome types (Masked, De-
tected, and OC). Each bar is divided into the application run-
time during the ROI (which begins after an application’s ini-
tialization phase) and the simulation overhead (Section 4.7).

Min injections run 2.1X faster on average3 than Ref for
all outcome types for two primary reasons. First, the applica-
tion runtime itself is faster (2.3X on average across outcome
types) due to the smaller input. Second, for some applica-
tions, the I/O and other simulation environment overhead is
significantly reduced for Min (1.8X on average). This is most
notable for LU and FFT, where a large output matrix is gener-
ated for Ref but not for Min. The output matrix needs to be
extracted for comparison and error classification (Figure 1).
Min’s smaller output matrices allow for faster post-processing,

3All averages in this paper refer to the arithmetic mean.

0

5

10

15

20

Sp
e
e
d
u
p

Min Min_EIP Ref_EIP

B
la
ck
sc
h
o
le
s

Sw
ap

ti
o
n
s

LU FF
T

W
at
e
r

St
re
am

cl
u
st
e
r

So
b
e
l

A
ve
ra
ge

38.9

Ref

𝐌𝐢𝐧𝐄𝐈𝐏𝐌𝐢n 𝐑𝐞𝐟𝐄𝐈𝐏

Figure 6. Min, MinEIP, and RefEIP speedup relative to Ref.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SD
C
-P
C
s

Common MinSDC MinSDC+ RefSDC RefSDC+

B
la
ck
sc
h
o
le
s

Sw
ap

ti
o
n
s

LU FF
T

W
at
e
r

St
re
am

cl
u
st
er

So
b
e
l

A
ve
ra
ge

Figure 7. Min and Ref accuracy. The Y-axis represents all
SDC-PCs found by Min or Ref in an application.

further speeding up the resiliency analysis relative to Ref for
these applications.

Figure 6 shows the total speedup obtained for Min (and the
Minotaur optimizations discussed in the next sections). The
first bar for each application shows the speedup from using a
Min input relative to Ref. Overall, the combination of having
fewer error sites and faster runtime per injection results in
a 4.1X speedup for Min over Ref on average (up to 15.5X
for FFT), with nearly all applications showing speedup. Even
for the applications that do not show much speedup (Stream-
cluster and Sobel), the Min inputs are more accurate than Ref
inputs (they identify more SDC-PCs) and benefit from error-
injection prioritization, as discussed in the next sections.

5.1.3 Minimization Accuracy
Figure 7 shows the accuracy of Ref and Min for each applica-
tion. The Y-axis corresponds to the union of SDC-PCs found
by Ref or Min, distributed into the five accuracy categories
(Section 4.4). The results show that a majority of SDC-PCs
are categorized in the same way by both Ref and Min (60%
on average are Common). Further, a large number of PCs fall

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
C

s
Ex

p
lo

re
d

95% Error Sites 98% Error Sites 99% Error Sites 100% Error Sites

R M R M R M R M R M R M R M R M

B
la

ck
sc

h
o

le
s

Sw
ap

ti
o

n
s

LU FF
T

W
at

e
r

St
re

am
cl

u
st

e
r

So
b

e
l

A
ve

ra
ge

Figure 8. Percentage of PCs explored for different error-site
coverage targets. R = Ref, M = Min.

in the MinSDC and MinSDC+ categories (35% on average).
These are SDC-PCs that Min finds that Ref misses – either
due to misclassification by Ref (MinSDC) or due to the lack
of exploration of that PC by Ref altogether (MinSDC+).

Figure 8 explains the surprising result of finding additional
SDC-PCs over Ref in the MinSDC+ category. The Y-axis
corresponds to the total number of static PCs explored for
different error site coverage targets. Ref error sites, although
much more than Min error sites (Section 5.1.2), generally ex-
plore fewer distinct PCs than Min at lower error site coverage
targets. Figure 8 shows that, on average, for 99% error-site
coverage (sorted by equivalence class size), Ref explores
55% of the static PCs explored by the union of Ref and Min,
while Min explores 85%. Thus, it can still be advantageous
to run resiliency analysis with Min for workloads such as
Streamcluster and Sobel, even though the total analysis time
is similar to that of running with Ref.

The remaining two categories, RefSDC and RefSDC+, re-
flect a loss of accuracy for Min. For many workloads, there
are no RefSDC+ because Min explores all the PCs explored
by Ref. The RefSDC category is also small, but not insignifi-
cant (4% on average). Upon further study of the misclassified
PCs, we found that a majority of the mismatches occur at the
boundary of SDC categories that distinguish if protection is
needed or not. For example, in many cases Ref identifies a
PC as SDC-Maybe, but Min identifies it as SDC-Good. Often
the difference in output quality between these is less than 1%.
Similarly, on the other end of the protection spectrum, there
are many PCs that mismatch because Ref classified the PC as
SDC-Bad but Min classified it as DDC.

Overall, Min shows significantly higher accuracy than Ref.
Of the total SDC-PCs discovered, on average, Min finds 96%
(the sum of Common, MinSDC, and MinSDC+ categories)
while Ref finds only 64% (the sum of Common, RefSDC, and
RefSDC+) of these SDC-PCs.

0

1

2

3

4

Bl
ac

ks
ch

ol
es

Sw
ap

tio
ns LU FF

T

W
at

er

St
re

am
cl

us
te

r

So
be

l

Av
er

ag
e

Sp
ee

du
p

Oracle_best Oracle_worst Random
ECS_D BitPos_D + ECS_D BitPos_A + ECS_D
DI_A + ECS_D RT_Int OP_Src

Figure 9. Min speedup with error-injection prioritization.

0

1

2

3

4

5

6

7

8

9

Bl
ac

ks
ch

ol
es

Sw
ap

tio
ns LU FF

T

W
at

er

St
re

am
cl

us
te

r

So
be

l

Av
er

ag
e

Sp
ee

du
p

Oracle_best Oracle_worst Random
ECS_D BitPos_D + ECS_D BitPos_A + ECS_D
DI_A + ECS_D RT_Int OP_Src

Figure 10. Ref speedup with error-injection prioritization.

5.1.4 Improving Min Selection Criteria
We studied branch and def-use coverage of Min (relative
to Ref) to understand if these stronger criteria could have
been used to generate an alternate Min that provides higher
accuracy than PC coverage. Table 1 shows that the Min inputs
generated using PC coverage already have very high branch
and def-use coverage of 99.76% and 98.78%, respectively,
relative to Ref. Further, as discussed, Min already finds 96%
of the SDC-PCs discovered by the union of Ref and Min.
Thus, the potential improvement from using the more complex
criteria is limited.

Nevertheless, we isolated the branch-target and def-use
pairs that were in Ref but not in Min to determine if they were
responsible for the RefSDCs in Figure 7. We found that none
of the RefSDC PCs intersect with the isolated branch-target
pairs and only four intersect with the def-use pairs (one each
for Blackscholes and Swaptions and two for LU). A more

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Pr
ob

ab
ili

ty
 o

f S
DC

 in
je

ct
io

n

Number of error injections

Blackscholes

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Pr
ob

ab
ili

ty
 o

f S
DC

 in
je

ct
io

n

Number of error injections

FFT

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Pr
ob

ab
ili

ty
 o

f S
DC

 in
je

ct
io

n

Number of error injections

LU

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Pr
ob

ab
ili

ty
 o

f S
DC

 in
je

ct
io

n

Number of error injections

Water

Figure 11. Cumulative probability (Y-axis) of picking an
SDC-causing error injection within the first n injections
(X-axis) for an SDC-causing PC.

comprehensive analysis would explore the entire control and
data flow paths rooted at the isolated branch-target and def-
use PCs in Ref to conclusively confirm whether the stronger
criteria would add further accuracy. We leave such an analysis
and exploration of even more complex input quality criteria
(e.g., path coverage) to future work, given that our results
already show that PC coverage provides an excellent sweet
spot for simplicity, performance, and accuracy.

5.2 Error-Injection Prioritization
We study 38 different error injection prioritization schemes
(Section 4.5). For brevity, we show results only for the 7
most effective schemes, in addition to the oracle best-case
and oracle worst-case schemes.

Figures 9 and 10 show the speedup results for Min and
Ref, respectively, for different error injection prioritization
schemes with early termination enabled. The figures show
a noticeable speedup for most cases for both Min and Ref.
Random prioritization gains the best average speedup of 2.4X
and 3.8X for Min and Ref (upto 3X and 8.1X), respectively,
while also being very close to the oracle best-case.

To understand the surprising result that Random performs
the best, Figure 11 plots the cumulative probability (averaged
over all SDC-PCs) of choosing an SDC-causing error injec-
tion after n error injections in an SDC-causing PC. Figure 11
shows only four applications using Ref input, but the trends
are representative across the workloads and inputs. The figure
shows that the probability of finding an SDC injection shoots
up within the first few injections. Upon investigation, we un-
cover an interesting insight – when a PC is SDC-causing, a
large fraction of the injections in that PC result in an SDC
outcome. Randomly choosing an injection therefore tends to
quickly find an SDC for that instruction. Thus, we choose the
Random error injection prioritization scheme for the remain-
der of the evaluations in this paper.

5.3 Minimization Plus Injection Prioritization
This section discusses the benefits of combining input mini-
mization with error injection prioritization. Figure 6 shows
the speedup in resiliency analysis, relative to Ref, from (1) us-
ing Min (discussed in Section 5.1.2), (2) using Min with error
injection prioritization (referred to as MinEIP), and (3) using
Ref with error injection prioritization (RefEIP). As previously
discussed in Section 5.1.2, using only Minotaur’s input mini-
mization optimization for resiliency analysis provides a 4.1X
average speedup (up to 15.5X) compared to Ref (first bar for
each application in Figure 6). Combining Minotaur’s input
minimization optimization with error injection prioritization
results in an average speedup of 10.3X (up to 38.9X for FFT),
relative to Ref. In contrast, RefEIP observes only a 3.8X av-
erage speedup (up to 8.14X for LU) relative to Ref (third
bar for each application in Figure 6 and also discussed in
Section 5.2).

Recall that the accuracy of MinEIP is the same as that of
Min (Section 5.1.3). Thus, in addition to MinEIP significantly
outperforming Ref and RefEIP on average, MinEIP has the
added benefit of finding many SDC-PCs that were not found
by Ref (and RefEIP) – Min finds 96% of the total SDC-PCs
while Ref finds 64%.

5.4 Input Prioritization
For safety-critical systems which may require even higher
accuracy, Minotaur provides the additional optimization of in-
put prioritization. This optimization can speed up the analysis
of multiple inputs in an attempt to further improve SDC-PC
identification without taking the performance hit of running
resiliency analysis for each individual input in its entirety.
Figure 12 shows the runtime of analyzing both MinEIP and
RefEIP, without and with input prioritization, normalized to
the runtime of MinEIP (Section 5.3).

The first bar for each application shows the runtime of em-
ploying a naive input prioritization scheme, by simply running
MinEIP followed by RefEIP analyses in their entirety (MinEIP
+ RefEIP in the figure). The second bar shows the runtime of
running MinEIP and RefEIP with input prioritization enabled.
That is, MinEIP is first run in its entirety (which is relatively
fast, as discussed in Section 5.3), followed by RefEIP but only
for PCs not identified as SDC-PCs by MinEIP. Thus, input pri-
oritization requires the second input (RefEIP in our study) to
run for only a fraction of the original resiliency analysis time.

Figure 12 shows that without input prioritization, MinEIP
+ RefEIP runs 3.7X slower than MinEIP. Using input prioriti-
zation ((MinEIP + RefEIP)IP in the figure) brings the analysis
time to only 1.6X slower than MinEIP. Thus, leveraging input
prioritization allows Minotaur to analyze both inputs 2.3X
faster on average than analyzing each input alone in its en-
tirety. By carrying over information from one input analysis
to the next, Minotaur is capable of achieving 100% accuracy
while running much quicker than previous techniques.

0

2

4

6

8

10

R
u

n
ti

m
e

 (
re

la
ti

ve
 t

o
 M

in
_E

IP
)

Min_EIP + Ref_EIP (Min_EIP + Ref_EIP)_IP

B
la

ck
sc

h
o

le
s

Sw
ap

ti
o

n
s

LU FF
T

W
at

e
r

St
re

am
cl

u
st

e
r

So
b

e
l

A
ve

ra
ge

𝑴𝒊𝒏𝑬𝑰𝑷

𝐌𝐢𝐧𝐄𝐈𝐏 + 𝐑𝐞𝐟𝐄𝐈𝐏 𝐌𝐢𝐧𝐄𝐈𝐏 + 𝐑𝐞𝐟𝐄𝐈𝐏 𝐈𝐏

Figure 12. Resiliency analysis time for analyzing both
MinEIP and RefEIP, without and with input prioritization,
normalized to analysis time for only MinEIP.

6 Minotaur Extensions
Minotaur’s techniques can be used to benefit analyses beyond
those discussed so far. This section demonstrates Minotaur’s
generality by discussing and evaluating two extensions.

6.1 Extension to Approximate Computing
The resiliency analyzer we chose (Approxilyzer [117]) can
also be used for approximate computing. Approxilyzer can
identify approximable instructions by grouping error sites
differently. Whereas for resiliency we focus on SDC-Maybe
and SDC-Bad outcomes (Section 2), Approxilyzer classifies
an instruction as approximable if no egregious errors – De-
tected, DDC, or OC above a user-defined threshold – are
observed for any dynamic instance of that instruction. We use
the following user-defined thresholds: 1) for financial applica-
tions, errors in individual outputs that are smaller than a cent
are tolerable and 2) for other applications, relative errors up
to 5% in individual outputs are tolerable. We use the same
Min and Ref inputs as in Table 1, and apply random error
injection prioritization with early termination (we observe the
same trend that randomized error injection ordering performs
close to oracle best). For approximate computing, early ter-
mination is triggered when an error-injection reveals a PC as
non-approximable, indicating that no further injections are
required for that instruction.

For approximate computing, Minotaur’s analysis time with-
out error injection prioritization is the same as that for re-
siliency since we use the same Min and Ref inputs. That is,
Min observes an average 4.1X speedup compared to Ref, due
to Min’s smaller size (Section 5.1.2). Applying error injec-
tion prioritization for approximate computing analysis (where
early termination differs compared to resiliency, as described
above), Min analysis can be sped up by 4.4X on average,
while Ref shows an average speedup of 5.53X. Combining
the two optimizations, MinEIP shows an average speedup of
18X compared to Ref for approximate computing analysis.

We use an accuracy metric similar to that in Section 4.4,
adapted from SDC-PC to Approximable-PC. Min shows very
high accuracy – of all the approximable-PCs identified by
both Min and Ref, on average, Min identifies 96% while Ref
identifies 81%.

6.2 Selective Instruction Analysis
Minotaur can speed up analysis for any desired subset of
PCs. For example, a user may desire to analyze the "hot"
PCs that account for X% of the dynamic execution. The user
can identify the "hot" PCs by first profiling Ref and then
switching to Min to run the resiliency analysis. For instance,
by targeting the PCs for the top 25% of the dynamic execution
in Blackscholes, MinEIP speeds up the analysis by 6.8X over
Ref for the same PCs and with 100% accuracy.

7 Related Work
Minotaur is the first work to systematically adapt and apply
software testing techniques for fast and effective resiliency
analysis. Section 2 describes the key background related work
from software testing. We discuss other related work here.
Concepts similar to Minotaur: We discuss the most directly
related works from other domains with similarities to differ-
ent concepts in Minotaur. IRA [58] uses statistical techniques
to generate reduced canary inputs that are used to explore
different approximation techniques; once an appropriate tech-
nique is found, it is applied to the larger input. In Minotaur,
the Min input is used not just for exploration, but also for
the final resiliency analysis. The Ref input is analyzed only
if additional accuracy is desired from multiple inputs and
even so, only a subset of Ref needs analysis. A key difference
is that IRA targets online production time analysis whereas
Minotaur is motivated by offline development time analysis.

DeepXplore [90] proposes the criterion of neuron cover-
age for quantifying the fraction of a deep learning system’s
logic exercised by a set of test inputs based on the number
of neurons activated by the inputs. Neuron coverage is an
orthogonal application-specific input quality criterion that
could be employed by Minotaur for appropriate domains.

There are several (static and runtime) approaches in other
contexts that share the same goal as Minotaur’s early termina-
tion technique, namely, cutting the computation short without
sacrificing accuracy [47, 51, 108, 129]. A recent example is
SnaPEA [129] where convolution operations are terminated
early if their output is predicted to be zero.

MinneSPEC [57] aims to provide reduced input workloads
to improve performance (usually runtime of applications),
which differs from our objective of uncovering SDC-PCs.
Hardware resiliency analysis: Many successful analysis
techniques have been proposed to address soft errors in both
hardware and software. They can be split into two groups:

1) Techniques that rely purely on static/dynamic program
analysis of error-free execution to model error propagation.
The widely used ACE [78] analysis is often used to mea-
sure the Architectural Vulnerability Factors (AVF) [43, 68,

78, 79, 82] of hardware structures. PVF [113] isolates purely
(program or software dependent) architecture-level vulnera-
bilities in the AVF; ePVF [34] further isolates bits that may
lead to crashes and achieves a more accurate estimation of
the program’s SDC vulnerability. Many cross-layer resiliency
solutions have been proposed using these techniques [1, 123].
Shoestring [35] uses a compiler analysis to identify vulner-
able program locations. While fast, these techniques do not
precisely model an error’s impact on the execution because
they use information from only an error-free execution.

2) Techniques that employ error injections. While typi-
cally slower than the previous group, these techniques em-
ploy error injections at different hardware and software
abstractions [18, 24, 31, 44, 54, 64, 65, 91, 109, 122].
Some rely predominantly on statistical error injections for
vulnerability analysis [25, 41, 60, 62, 118]. Others com-
bine program analysis with selected error-injection cam-
paigns [2, 49, 54, 61, 108, 117]. For example, MeRLiN [54]
applies ACE-like analysis and error pruning to accelerate sta-
tistical micro-architectural error injections. It can provide fine-
grained reliability estimates for hardware structures and SDC
vulnerability estimates for software. VTrident [61] uses error
injections in static instructions to build an input-dependent
model on top of Trident’s [63] error propagation analysis
to predict the instruction’s SDC vulnerability. Approxilyzer
analysis, used in this paper, is also a hybrid technique, but
its primary goal is not a statistical average or probability—it
is to determine precisely if/how an error in any specific in-
struction will impact the final output. Approxilyzer builds on
Relyzer [49], so Minotaur can trivially apply to Relyzer.

Minotaur is an orthogonal technique that can be used to im-
prove many of the above techniques. In general, the concepts
of measuring input quality and input minimization are broadly
applicable to all techniques that use application inputs. PC
coverage as an input quality criterion can conceptually apply
to many of the above techniques, but it needs experimen-
tal verification. Error injection prioritization can be directly
applied to all techniques that use error injections. Input prior-
itization is also a general concept that can be applied in cases
where multiple inputs are used.

Minotaur can potentially be applicable to other hardware
platforms as well. Although this work focuses on CPUs, re-
cent resiliency analyses on GPUs [55, 62, 83], for example,
can potentially benefit from the concepts of Minotaur to im-
prove runtime and/or accuracy.
Approximate computing: Many techniques have been pro-
posed that leverage approximate computing at the level of soft-
ware [8, 11, 23, 71, 85, 100, 106, 110, 114, 121, 125, 127],
programming languages [15, 20, 74, 86, 87, 101, 102] and
hardware [5, 11, 16, 33, 42, 46, 53, 56, 77, 103, 105, 112,
126, 128, 133] for improved performance, energy, or reliabil-
ity. Criticality-testing [3, 4, 21, 75, 84, 97, 115] of approxi-
mate computations is important for many domains. Minotaur
is an orthogonal set of techniques that can be used to improve
many of these analyses that use application input(s).

8 Conclusion and Future Work
We present Minotaur, a toolkit to improve the analysis of
software vulnerability to hardware errors by leveraging con-
cepts from software testing. Minotaur adapts several concepts
from software testing for software bug detection to resiliency
analysis for hardware error detection: 1) identifying test-case
quality criteria, 2) test-case minimization, and 3) two adap-
tations of test-case prioritization. We evaluate Minotaur on
a resiliency analysis tool, Approxilyzer. Minotaur’s single-
input techniques speed up Approxilyze’s resiliency analysis
by 10.3X on average while significantly improving SDC-PC
detection accuracy (96% vs. 64% on average) for the work-
loads studied. Further, Minotaur presents a technique, input
prioritization, which enables finding SDC-PCs across multi-
ple inputs at a speed 2.3X faster (on average) than analyzing
each input independently.

Although Minotaur is already very effective, there are many
avenues of future work to improve both Minotaur’s effective-
ness and its applicability. For example, we plan to explore
more input quality criteria (such as path coverage, loop cov-
erage, or state coverage [7]) as well as develop new quality
criteria geared specifically towards resiliency (e.g., criteria
derived from ACE bits [78] or PVF [113]) or towards approx-
imate computing (e.g., using parameter range coverage). We
also plan to employ more sophisticated optimizers to improve
the speed and scalability of the Minimizer along with custom
minimization objectives (e.g., number of error-sites analyzed)
for faster Mins. We can also improve the Input Selector by
tuning analysis speed vs. accuracy for multiple Refs and Mins
with variable input quality thresholds.

To widen the applicability of Minotaur, we plan to apply
it to other resiliency and approximation analysis techniques
proposed in the literature, using a broader range of error
models abstracted at lower and higher layers of the system
stack than studied here.

Our end goal is a seamless integration of resiliency analy-
sis (and hardening) into the standard software development
and testing workflow. We believe Minotaur opens up many
avenues for further research towards this ambitious end goal.
Modern software development practices such as continuous
integration encourage developers to continuously commit
their code, which would be ideally checked for resiliency,
making fast and accurate resiliency analysis techniques such
as Minotaur even more important.

Acknowledgements
This material is based upon work supported by the National
Science Foundation under Grants Nos. CCF-1320941, CCF-
1421503, CCF-1703637, and CCF-1725734, by the Center
for Future Architectures Research (C-FAR), one of the six
centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA, and by the
Applications Driving Architectures (ADA) Research Center,
a JUMP Center co-sponsored by SRC and DARPA.

References
[1] Abhinav Agrawal, Bagus Wibowo, and James Tuck. 2017. Software

Marking for Cross-Layer Architectural Vulnerability Estimation Model.
In Proc. of IEEE Workshop on Silicon Errors in Logic - System Effects
(SELSE).

[2] Khalique Ahmed. 2018. Relyzer+: an Open Source Tool for
Application-Level Soft Error Resiliency Analysis. (July 2018).

[3] Riad Akram. 2017. Performance and Accuracy Analysis of Programs
Using Approximation Techniques. Ph.D. Dissertation.

[4] R. Akram and A. Muzahid. 2017. Approximeter: Automatically find-
ing and quantifying code sections for approximation. In 2017 IEEE
International Symposium on Workload Characterization (IISWC).

[5] Ismail Akturk, Nam Sung Kim, and Ulya R. Karpuzcu. 2015. De-
coupled Control and Data Processing for Approximate Near-threshold
Voltage Computing. IEEE Micro Special Issue on Heterogeneous Com-
puting (2015), 70–78.

[6] Mohammad Amin Alipour, August Shi, Rahul Gopinath, Darko Mari-
nov, and Alex Groce. 2016. Evaluating Non-Adequate Test-Case Re-
duction. In Proc. of International Conference on Automated Software
Engineering (ASE).

[7] Paul Ammann and Jeff Offutt. 2008. Introduction to Software Testing.
Cambridge University Press.

[8] Woongki Baek and Trishul M. Chilimbi. 2010. Green: A Framework
for Supporting Energy-conscious Programming Using Controlled Ap-
proximation. In Proc. of International Conference on Programming
Language Design and Implementation (PLDI). 198–209.

[9] Alfredo Benso, Stefano Di Carlo, Giorgio Di Natale, Paolo Prinetto,
and Luca Tagliaferri. 2003. Data Criticality Estimation in Software
Applications. In Proc. of International Test Conference (ITC).

[10] David E. Bernholdt, Al Geist, and Barney Maccabe. 2014. Resilience is
a Software Engineering Issue. Software Productivity for Extreme-Scale
Science (SWP4XS) Workshop, Oak Ridge National Laboratory (2014).

[11] Filipe Betzel, Karen Khatamifard, Harini Suresh, David J. Lilja, John
Sartori, and Ulya Karpuzcu. 2018. Approximate Communication: Tech-
niques for Reducing Communication Bottlenecks in Large-Scale Paral-
lel Systems. ACM Comput. Surv. 51, 1, Article 1 (Jan. 2018).

[12] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D.
Dissertation. Princeton University.

[13] Matteo Bordin, Cyrille Comar, Tristan Gingold, Jérôme Guitton, Olivier
Hainque, and Thomas Quinot. 2010. Object and Source Coverage for
Critical Applications with the COUVERTURE Open Analysis Frame-
work. In Embedded Real Time Software and Systems (ERTSS).

[14] Shekhar Borkar. 2005. Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability and Degradation.
IEEE Micro 25, 6 (2005).

[15] Brett Boston, Adrian Sampson, Dan Grossman, and Luis Ceze. 2015.
Probability Type Inference for Flexible Approximate Programming. In
Proc. of International Conference on Object-Oriented Programming,
Systems, Languages & Applications (OOPSLA). 470–487.

[16] Rahul Boyapati, Jiayi Huang, Pritam Majumder, Ki Hwan Yum, and
Eun Jung Kim. 2017. APPROX-NoC: A Data Approximation Frame-
work for Network-On-Chip Architectures. In Proc. of International
Symposium on Computer Architecture (ISCA). 666–677.

[17] Jörg Brauer, Markus Dahlweid, Tobias Pankrath, and Jan Peleska. 2015.
Source-Code-to-Object-Code Traceability Analysis for Avionics Soft-
ware: Don’T Trust Your Compiler. In Proceedings of the 34th Inter-
national Conference on Computer Safety, Reliability, and Security -
Volume 9337 (SAFECOMP 2015).

[18] Jon Calhoun, Luke Olson, and Marc Snir. 2014. FlipIt: An LLVM based
fault injector for HPC. In European Conference on Parallel Processing.
Springer, 547–558.

[19] Franck Cappello, Geist Al, William Gropp, Sanjay Kale, Bill Kramer,
and Marc Snir. 2014. Toward Exascale Resilience: 2014 Update. Su-
percomput. Front. Innov.: Int. J. (2014).

[20] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. 2013. Verify-
ing Quantitative Reliability for Programs That Execute on Unreliable
Hardware. In Proc. of International Conference on Object-Oriented
Programming, Systems, Languages & Applications (OOPSLA). 33–52.

[21] Michael Carbin and Martin C. Rinard. 2010. Automatically Identi-
fying Critical Input Regions and Code in Applications. In Proc. of
International Symposium on Software Testing and Analysis (ISSTA).
37–48.

[22] Eric Cheng, Shahrzad Mirkhani, Lukasz G. Szafaryn, Chen-Yong Cher,
Hyungmin Cho, Kevin Skadron, Mircea R. Stan, Klas Lilja, Jacob A.
Abraham, Pradip Bose, and Subhasish Mitra. 2016. CLEAR: Cross-
Layer Exploration for Architecting Resilience - Combining Hardware
and Software Techniques to Tolerate Soft Errors in Processor Cores. In
Proceedings of the 53rd Annual Design Automation Conference (DAC
’16).

[23] Ting-Wu Chin, Chia-Lin Yu, Matthew Halpern, Hasan Genc, Shiao-Li
Tsao, and Vijay Janapa Reddi. 2018. Domain-Specific Approximation
for Object Detection. IEEE Micro 38, 1 (January 2018), 31–40.

[24] Hyungmin Cho, S. Mirkhani, Chen-Yong Cher, J.A. Abraham, and S.
Mitra. 2013. Quantitative Evaluation of Soft Error Injection Techniques
for Robust System Design. In Proc. of International Design Automation
Conference (DAC). 1–10.

[25] Jeffrey J. Cook and Craig B. Zilles. 2008. A Characterization of
Instruction-level Error Derating and its Implications for Error Detec-
tion. In Proc. of International Conference on Dependable Systems and
Networks (DSN).

[26] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. 2010.
Relax: An Architectural Framework for Software Recovery of Hard-
ware Faults. In Proc. of International Symposium on Computer Archi-
tecture (ISCA).

[27] Nathan DeBardeleben, James Laros, John T Daly, Stephen L Scott,
Christian Engelmann, and Bill Harrod. 2009. High-end Computing
Resilience: Analysis of Issues Facing the HEC Community and Path-
forward for Research and Development. Whitepaper (2009).

[28] Dua Dheeru and Efi Karra Taniskidou. 2017. UCI Machine Learning
Repository. (2017). http://archive.ics.uci.edu/ml

[29] Martin Dimitrov and Huiyang Zhou. 2007. Unified Architectural Sup-
port for Soft-Error Protection or Software Bug Detection. In Proc. of
International Conference on Parallel Archtectures and Compilation
Techniques (PACT).

[30] Martin Dimitrov and Huiyang Zhou. 2009. Anomaly-based Bug Predic-
tion, Isolation, and Validation: An Automated Approach for Software
Debugging. In Proc. of International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS).

[31] Waleed Dweik, Murali Annavaram, and Michel Dubois. 2014.
Reliability-Aware Exceptions: Tolerating Intermittent Faults in Mi-
croprocessor Array Structures. In Proc. of Design, Automation Test in
Europe Conference Exhibition (DATE). 1–6.

[32] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao,
Toan Pham, Conrad Ziesler, David Blaauw, Todd Austin, Krisztian
Flautner, and Trevor Mudge. 2003. Razor: A Low-Power Pipeline
Based on Circuit-Level Timing Speculation. In Proc. of International
Symposium on Microarchitecture (MICRO).

[33] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.
2012. Neural Acceleration for General-Purpose Approximate Programs.
In Proc. of International Symposium on Microarchitecture (MICRO).
449–460.

[34] Bo Fang, Qining Lu, Karthik Pattabiraman, Matei Ripeanu, and Sud-
hanva Gurumurthi. 2016. ePVF: An Enhanced Program Vulnerability
Factor Methodology for Cross-Layer Resilience Analysis. In 2016 46th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). 168–179.

[35] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke. 2010.
Shoestring: Probabilistic Soft Error Reliability on the Cheap. In Proc.
of International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

http://archive.ics.uci.edu/ml

[36] International Organization for Standardization. 2011. Road vehicles
– Functional safety. Website. (2011). https://www.iso.org/standard/
43464.html.

[37] Phyllis G. Frankl and Elaine J. Weyuker. 1988. An applicable family of
data flow testing criteria. IEEE Transactions on Software Engineering
14, 10 (Oct 1988), 1483–1498.

[38] Olga Goloubeva, Maurizio Rebaudengo, M Sonza Reorda, and Mas-
simo Violante. 2003. Soft-Error Detection Using Control Flow As-
sertions. In Proc. of International Symposium on Defect and Fault
Tolerance in VLSI Systems.

[39] Alex Groce, Mohammed Amin Alipour, Chaoqiang Zhang, Yang Chen,
and John Regehr. 2014. Cause Reduction for Quick Testing. In ICST.
243–252.

[40] Alex Groce, Mohammad Amin Alipour, Chaoqiang Zhang, Yang Chen,
and John Regehr. 2015. Cause reduction: Delta debugging, even without
bugs. STVR 26, 1 (2015), 40–68.

[41] Weining Gu, Z. Kalbarczyk, Ravishankar, K. Iyer, and Zhenyu Yang.
2003. Characterization of Linux Kernel Behavior Under Errors. In Proc.
of International Conference on Dependable Systems and Networks
(DSN).

[42] Peizhen Guo and Wenjun Hu. 2018. Potluck: Cross-Application Ap-
proximate Deduplication for Computation-Intensive Mobile Applica-
tions. In Proc. of International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 271–284.

[43] Manish Gupta, Vilas Sridharan, David Roberts, Andreas Prodromou,
Ashish Venkat, Dean Tullsen, and Rajesh Gupta. 2018. Reliability-
Aware Data Placement for Heterogeneous Memory Architecture. In
Proc. of International Symposium on High Performance Computer
Architecture (HPCA). 583–595.

[44] Meeta S Gupta, Jude A Rivers, Liang Wang, and Pradip Bose. 2014.
Cross-layer System Resilience at Affordable Power. In 2014 IEEE
International Reliability Physics Symposium. 2B.1.1–2B.1.8.

[45] Jiawei Han, Micheline Kamber, and Jian Pei. 2011. Data Mining:
Concepts and Techniques (3rd ed.). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

[46] Jie Han and Michael Orshansky. 2013. Approximate computing: An
Emerging Paradigm for Energy-efficient Design. In ETS. IEEE Com-
puter Society, 1–6.

[47] Song Han, Huizi Mao, and William J. Dally. 2015. Deep Compression:
Compressing Deep Neural Network with Pruning, Trained Quantization
and Huffman Coding. CoRR (2015).

[48] Siva Kumar Sastry Hari, Sarita V. Adve, and Helia Naeimi. 2012. Low-
cost Program-level Detectors for Reducing Silent Data Corruptions.
In Proc. of International Conference on Dependable Systems and Net-
works (DSN).

[49] Siva Kumar Sastry Hari, Sarita V. Adve, Helia Naeimi, and Pradeep
Ramachandran. 2012. Relyzer: Exploiting Application-Level Fault
Equivalence to Analyze Application Resiliency to Transient Faults. In
Proc. of International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS).

[50] Siva Kumar Sastry Hari, Man-Lap Li, Pradeep Ramachandran, Byn
Choi, and Sarita V. Adve. 2009. mSWAT: Low-cost Hardware Fault De-
tection and Diagnosis for Multicore Systems. In Proc. of International
Symposium on Microarchitecture (MICRO).

[51] Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel Pruning for
Accelerating Very Deep Neural Networks. CoRR (2017).

[52] Muhammed Isenkul, Betul Sakar, and O Kursun. 2014. Improved
Spiral Test Using Digitized Graphics Tablet for Monitoring Parkin-
son’s Disease. In The 2nd International Conference on e-Health and
Telemedicine (ICEHTM-2014).

[53] Djordje Jevdjic, Karin Strauss, Luis Ceze, and Henrique S. Malvar.
2017. Approximate Storage of Compressed and Encrypted Videos. In
Proc. of International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). 361–373.

[54] Manolis Kaliorakis, Dimitris Gizopoulos, Ramon Canal, and Antonio
Gonzalez. 2017. MeRLiN: Exploiting Dynamic Instruction Behavior

for Fast and Accurate Microarchitecture Level Reliability Assessment.
In Proc. of International Symposium on Computer Architecture (ISCA).

[55] Charu Kalra, Fritz Previlon, Xiangyu Li, Norman Rubin, and David
Kaeli. 2018. PRISM: Predicting Resilience of GPU Applications Using
Statistical Methods. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis (SC
’18). IEEE Press, Article 69.

[56] S. Karen Khatamifard, Ismail Akturk, and Ulya R. Karpuzcu. 2017.
On Approximate Speculative Lock Elision. IEEE Transactions on
Multiscale Computing Systems, Special Issue on Emerging Technologies
and Architectures for Manycore Computing (2017).

[57] A J KleinOsowski and David J. Lilja. 2002. MinneSPEC: A New SPEC
Benchmark Workload for Simulation-Based Computer Architecture
Research. IEEE Comput. Archit. Lett. 1, 1 (Jan. 2002), 7.

[58] Michael A. Laurenzano, Parker Hill, Mehrzad Samadi, Scott Mahlke, Ja-
son Mars, and Lingjia Tang. 2016. Input Responsiveness: Using Canary
Inputs to Dynamically Steer Approximation. In Proc. of International
Conference on Programming Language Design and Implementation
(PLDI). 161–176.

[59] Régis Leveugle, A Calvez, Paolo Maistri, and Pierre Vanhauwaert. 2009.
Statistical Fault Injection: Quantified Error and Confidence. In Proc. of
Design, Automation Test in Europe Conference Exhibition (DATE).

[60] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy
Tsai, Karthik Pattabiraman, Joel Emer, and Stephen W. Keckler. 2017.
Understanding Error Propagation in Deep-Learning Neural Networks
(DNN) Accelerators and Applications. In The International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC).

[61] Guanpeng Li and Karthik Pattabiraman. 2018. Modeling Input-
Dependent Error Propagation in Programs. In Proc. of International
Conference on Dependable Systems and Networks (DSN). 279–290.

[62] Guanpeng Li, Karthik Pattabiraman, Chen-Yang Cher, and Pradip Bose.
2016. Understanding Error Propagation in GPGPU Applications. In In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (SC). 240–251.

[63] Guanpeng Li, Karthik Pattabiraman, Siva Kumar Sastry Hari, Michael
Sullivan, and Timothy Tsai. 2018. Modeling Soft-Error Propagation in
Programs. In Proc. of International Conference on Dependable Systems
and Networks (DSN).

[64] Jianli Li and Qingping Tan. 2013. SmartInjector: Exploiting Intelligent
Fault Injection for SDC Rate Analysis. In 2013 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFTS). 236–242.

[65] Man-Lap Li, Pradeep Ramachandran, Rahmet Ulya Karpuzcu, Siva Ku-
mar Sastry Hari, and Sarita V. Adve. 2009. Accurate Microarchitecture-
Level Fault Modeling for Studying Hardware Faults. In Proc. of In-
ternational Symposium on High Performance Computer Architecture
(HPCA).

[66] Man-Lap Li, Pradeep Ramachandran, Swarup Sahoo, Sarita
Adve, Vikram Adve, and Yuanyuan Zhou. 2008. Trace-Based
Microarchitecture-Level Diagnosis of Permanent Hardware Faults. In
Proc. of International Conference on Dependable Systems and Net-
works (DSN).

[67] Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V.
Adve, Vikram S. Adve, and Yuanyuan Zhou. 2008. Understanding the
Propagation of Hard Errors to Software and Implications for Resilient
Systems Design. In Proc. of International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS).

[68] Xiaodong Li, Sarita Adve, Pradip Bose, and Jude Rivers. 2007. Online
Estimation of Architectural Vulnerability Factor for Soft Errors. In
Proc. of International Symposium on Computer Architecture (ISCA).
341–352.

[69] ImageMagick Studio LLC. 2018. Image Magick. Website. (2018).
https://www.imagemagick.org/.

https://www.iso.org/standard/43464.html
https://www.iso.org/standard/43464.html
https://www.imagemagick.org/

[70] Galen Lyle, Shelley Chen, Karthik Pattabiraman, Zbigniew Kalbar-
czyk, and Ravishankar Iyer. 2009. An End-to-end Approach for the
Automatic Derivation of Application-Aware Error Detectors. In Proc.
of International Conference on Dependable Systems and Networks
(DSN).

[71] Divya Mahajan, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites,
and Hadi Esmaeilzadeh. 2016. Towards Statistical Guarantees in Con-
trolling Quality Tradeoffs for Approximate Acceleration. In Proc. of
International Symposium on Computer Architecture (ISCA).

[72] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R.
Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill,
and David A. Wood. 2005. Multifacet’s General Execution-Driven
Multiprocessor Simulator (GEMS) Toolset. SIGARCH Computer Ar-
chitecture News 33, 4 (2005).

[73] Albert Meixner, Michael E. Bauer, and Daniel J. Sorin. 2007. Argus:
Low-Cost, Comprehensive Error Detection in Simple Cores. In Proc.
of International Symposium on Microarchitecture (MICRO).

[74] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C.
Rinard. 2014. Chisel: Reliability- and Accuracy-aware Optimization
of Approximate Computational Kernels. SIGPLAN Not. 49, 10 (Oct.
2014), 309–328.

[75] Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and Martin Ri-
nard. 2010. Quality of Service Profiling. In Proc. of International
Conference on Software Engineering (ICSE). 25–34.

[76] Asit K Mishra, Rajkishore Barik, and Somnath Paul. 2014. iACT: A
Software-hardware Framework for Understanding the Scope of Ap-
proximate Computing. In WACAS.

[77] T. Moreau, J. San Miguel, M. Wyse, J. Bornholt, A. Alaghi, L. Ceze,
N. Enright Jerger, and A. Sampson. 2018. A Taxonomy of General Pur-
pose Approximate Computing Techniques. IEEE Embedded Systems
Letters 10, 1 (March 2018), 2–5.

[78] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K.
Reinhardt, and Todd Austin. 2003. A Systematic Methodology to Com-
pute the Architectural Vulnerability Factors for a High-Performance
Microprocessor. In Proc. of International Symposium on Microarchi-
tecture (MICRO).

[79] Shubhendu S Mukherjee, Christopher Weaver, Joel Emer, Steven K
Reinhardt, and Todd Austin. 2003. A Systematic Methodology to Com-
pute the Architectural Vulnerability Factors for a High-performance
Microprocessor. In Proc. of International Symposium on Microarchi-
tecture (MICRO). 29–40.

[80] Shubhendu S. Mukherjee, Christopher T. Weaver, Joel Emer, Steven K.
Reinhardt, and Todd Austin. 2003. Measuring Architectural Vulnera-
bility Factors. IEEE Micro 23, 6 (Nov. 2003), 70–75.

[81] Glenford J. Myers. 1979. Art of Software Testing. John Wiley & Sons,
Inc., New York, NY, USA.

[82] Ajeya Naithani, Stijn Eyerman, and Lieven Eeckhout. 2017. Reliability-
Aware Scheduling on Heterogeneous Multicore Processors. In Proc. of
International Symposium on High Performance Computer Architecture
(HPCA). 397–408.

[83] Bin Nie, Lishan Yang, Adwait Jog, and Evgenia Smirni. 2018. Fault
Site Pruning for Practical Reliability Analysis of GPGPU Applica-
tions. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 749–761.

[84] Bernard Nongpoh, Rajarshi Ray, Saikat Dutta, and Ansuman Banerjee.
2017. AutoSense: A Framework for Automated Sensitivity Analysis
of Program Data. IEEE Transactions on Software Engineering PP, 99
(2017), 1–1.

[85] Jongse Park, Emmanuel Amaro, Divya Mahajan, Bradley Thwaites,
and Hadi Esmaeilzadeh. 2016. AxGames: Towards Crowdsourcing
Quality Target Determination in Approximate Computing. In Proc. of
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 623–636.

[86] Jongse Park, Hadi Esmaeilzadeh, Xin Zhang, Mayur Naik, and William
Harris. 2015. FlexJava: Language Support for Safe and Modular Ap-
proximate Programming. In Proceedings of the 10th Joint Meeting on

Foundations of Software Engineering. 745–757.
[87] Jongse Park, Xin Zhang, Kangqi Ni, Hadi Esmaeilzadeh, and Mayur

Naik. 2014. ExpAX: A Framework for Automating Approximate
Programming. In Technical Report, Georgia Institute of Technology.

[88] Karthik Pattabiraman, Nithin Nakka, Zbigniew Kalbarczyk, and Ravis-
hankar Iyer. 2008. SymPLFIED: Symbolic Program-level Fault Injec-
tion and Error Detection Framework. In International Conference on
Dependable Systems and Networks.

[89] Karthik Pattabiraman, G. P. Saggese, D. Chen, Z. Kalbarczyk, and
R. K. Iyer. 2006. Dynamic Derivation of Application-Specific Error
Detectors and their Implementation in Hardware. In Proc. of European
Dependable Computing Conference (EDCC).

[90] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deep-
Xplore: Automated Whitebox Testing of Deep Learning Systems. In
Proc. of Symposium on Operating Systems Principles (SOP). 1–18.

[91] Andrea Pellegrini, Robert Smolinski, Lei Chen, Xin Fu, Siva Ku-
mar Sastry Hari, Junhao Jiang, Sarita V Adve, Todd Austin, and Valeria
Bertacco. 2012. CrashTesting SWAT: Accurate, Gate-Level Evaluation
of Symptom-Based Resiliency Solutions. In Proc. of Design, Automa-
tion Test in Europe Conference Exhibition (DATE).

[92] Paul Racunas, K. Constantinides, S. Manne, and S. S. Mukherjee. 2007.
Perturbation-based Fault Screening. In Proc. of International Sympo-
sium on High Performance Computer Architecture (HPCA).

[93] Sandra Rapps and Elaine J. Weyuker. 1985. Selecting Software Test
Data Using Data Flow Information. IEEE Transactions on Software
Engineering SE-11, 4 (1985), 367–375.

[94] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and
Xuejun Yang. 2012. Test-case Reduction for C Compiler Bugs. In Proc.
of International Conference on Programming Language Design and
Implementation (PLDI).

[95] Kevin Reick, Pia N Sanda, Scott Swaney, Jeffrey W Kellington, Michael
Mack, Michael Floyd, and Daniel Henderson. 2008. Fault-Tolerant
Design of the IBM Power6 Microprocessor. IEEE Micro (2008).

[96] Philippe Ricoux. 2013. European Exascale Software Initiative EESI2-
Towards Exascale Roadmap Implementation. 2nd IS-ENES workshop
on high-performance computing for climate models (2013).

[97] Pooja Roy, Rajarshi Ray, Chundong Wang, and Weng Fai Wong. 2014.
ASAC: Automatic Sensitivity Analysis for Approximate Computing. In
Proc. of Conference on Languages, Compilers and Tools for Embedded
Systems (LCTES). 95–104.

[98] Swarup Sahoo, Man-Lap Li, Pradeep Ramchandran, Sarita V. Adve,
Vikram Adve, and Yuanyuan Zhou. 2008. Using Likely Program Invari-
ants to Detect Hardware Errors. In Proc. of International Conference
on Dependable Systems and Networks (DSN).

[99] Betul Erdogdu Sakar, M. Erdem Isenkul, Cemal Okan Sakar, Ahmet
Sertbas, Fikret S. Gürgen, Sakir Delil, Hulya Apaydin, and Olcay
Kursun. 2013. Collection and Analysis of a Parkinson Speech Dataset
With Multiple Types of Sound Recordings. IEEE Journal of Biomedical
and Health Informatics 17 (2013), 828–834.

[100] Mehrzad Samadi, Janghaeng Lee, D. Anoushe Jamshidi, Amir Hor-
mati, and Scott Mahlke. 2013. SAGE: Self-tuning Approximation for
Graphics Engines. In Proc. of International Symposium on Microarchi-
tecture (MICRO). 13–24.

[101] Adrian Sampson, André Baixo, Benjamin Ransford, Thierry Moreau,
Joshua Yip, Luis Ceze, and Mark Oskin. 2015. ACCEPT: A
Programmer-guided Compiler Framework for Practical Approximate
Computing. In Technical Report UW-CSE-15-01-01, University of
Washington.

[102] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-
gasam, Luis Ceze, and Dan Grossman. 2011. EnerJ: Approximate
Data Types for Safe and General Low-power Computation. In Proc.
of International Conference on Programming Language Design and
Implementation (PLDI). 164–174.

[103] Joshua San Miguel, Jorge Albericio, Andreas Moshovos, and Na-
talie Enright Jerger. 2015. Doppelganger: A Cache for Approximate

Computing. In Proc. of International Symposium on Microarchitecture
(MICRO).

[104] Behrooz Sangchoolie, Karthik Pattabiraman, and Johan Karlsson.
2017. One Bit is (Not) Enough: An Empirical Study of the Impact of
Single and Multiple Bit-Flip Errors. In 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).

[105] John Sartori and Rakesh Kumar. 2011. Architecting Processors to
Allow Voltage/Reliability Tradeoffs. In Proc. of International Confer-
ence on Compilers, Architectures and Synthesis for Embedded Systems
(CASES). 115–124.

[106] John Sartori and Rakesh Kumar. 2013. Branch and Data Herding:
Reducing Control and Memory Divergence for Error-Tolerant GPU
Applications. Multimedia, IEEE Transactions on 15, 2 (Feb 2013),
279–290.

[107] Siva Kumar Sastry Hari, Radha Venkatagiri, Sarita V. Adve, and
Helia Naeimi. 2014. GangES: Gang Error Simulation for Hardware
Resiliency Evaluation. SIGARCH Comput. Archit. News 42, 3 (June
2014), 61–72.

[108] Siva Kumar Sastry Hari, Radha Venkatagiri, Sarita V. Adve, and
Helia Naeimi. 2014. GangES: Gang Error Simulation for Hardware
Resiliency Evaluation. In Proceeding of the 41st Annual International
Symposium on Computer Architecuture (ISCA ’14). IEEE Press, 61–72.

[109] Horst Schirmeier, Martin Hoffmann, Christian Dietrich, Michael Lenz,
Daniel Lohmann, and Olaf Spinczyk. 2015. FAIL*: An Open and
Versatile Fault-Injection Framework for the Assessment of Software-
Implemented Hardware Fault Tolerance. In European Dependable Com-
puting Conference (EDCC). 245–255.

[110] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and
Martin C. Rinard. 2011. Managing Performance vs. Accuracy Trade-
offs with Loop Perforation. In SIGSOFT FSE. 124–134.

[111] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve,
Saurabh Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cap-
pello, Bill Carlson, Andrew A Chien, Paul Coteus, Nathan A De-
bardeleben, Pedro C Diniz, Christian Engelmann, Mattan Erez, Saverio
Fazzari, Al Geist, Rinku Gupta, Fred Johnson, Sriram Krishnamoor-
thy, Sven Leyffer, Dean Liberty, Subhasish Mitra, Todd Munson, Rob
Schreiber, Jon Stearley, and Eric Van Hensbergen. 2013. Address-
ing Failures in Exascale Computing*. International Journal of High
Performance Computing (2013).

[112] Haiyue Song, Xiang Song, Tianjian Li, Hao Dong, Naifeng Jing,
Xiaoyao Liang, and Li Jiang. 2018. A FPGA Friendly Approximate
Computing Framework with Hybrid Neural Networks. In Proc. of
International Symposium on Field-Programmable Gate Arrays (FPGA).
286–286.

[113] Vilas Sridharan and David R. Kaeli. 2009. Eliminating Microar-
chitectural Dependency from Architectural Vulnerability. In Proc. of
International Symposium on High Performance Computer Architecture
(HPCA).

[114] Xin Sui, Andrew Lenharth, Donald S. Fussell, and Keshav Pingali.
2016. Proactive Control of Approximate Programs. In International
Conference on Architectural Support for Programming Languages and
Operating Systems. 607–621.

[115] Anna Thomas and Karthik Pattabiraman. 2013. Error Detector Place-
ment for Soft Computation. In International Conference on Dependable
Systems and Networks. 1–12.

[116] Radha Venkatagiri, Abdulrahman Mahmoud, Siva Kumar Sastry Hari,
and Sarita V. Adve. 2016. Approxilyzer Code Repository. Website.
(2016). https://cs.illinois.edu/approxilyzer

[117] Radha Venkatagiri, Abdulrahman Mahmoud, Siva Kumar Sastry Hari,
and Sarita V. Adve. 2016. Approxilyzer: Towards a Systematic Frame-
work for Instruction-level Approximate Computing and its Application

to Hardware Resiliency. In Proc. of International Symposium on Mi-
croarchitecture (MICRO). 1–14.

[118] Radha Venkatagiri, Karthik Swaminathan, Chung-Ching Lin, Liang
Wang, Alper Buyuktosunoglu, Pradip Bose, and Sarita Adve. 2018.
Impact of Software Approximations on the Resiliency of a Video Sum-
marization System. In Proc. of International Conference on Dependable
Systems and Networks (DSN).

[119] Virtutech. 2006. Simics Full System Simulator. Website. (2006).
http://www.simics.net.

[120] Nicholas J Wang and Sanjay J Patel. 2006. ReStore: Symptom-Based
Soft Error Detection in Microprocessors. IEEE Transactions on De-
pendable and Secure Computing 3, 3 (July-Sept 2006).

[121] Ting Wang, Qian Zhang, and Qiang Xu. 2017. ApproxQA: A Unified
Quality Assurance Framework for Approximate Computing. In Proc.
of Design, Automation Test in Europe Conference Exhibition (DATE).
254–257.

[122] J. Wei, A. Thomas, G. Li, and K. Pattabiraman. 2014. Quantifying
the Accuracy of High-Level Fault Injection Techniques for Hardware
Faults. In Proc. of International Conference on Dependable Systems
and Networks (DSN). 375–382.

[123] Bagus Wibowo, Abhinav Agrawal, Thomas Stanton, and James Tuck.
2016. An Accurate Cross-Layer Approach for Online Architectural
Vulnerability Estimation. ACM Trans. Archit. Code Optim. (2016),
30:1–30:27.

[124] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. 1995. The SPLASH-2 Programs: Characteri-
zation and Methodological Considerations. In International Symposium
on Computer Architecture.

[125] Hans-Joachim Wunderlich, Claus Braun, and Alexander Schöll. 2016.
Pushing the Limits: How Fault Tolerance Extends the Scope of Approx-
imate Computing. In Proc. of International Symposium on On-Line
Testing and Robust System Design (IOLTS). 133–136.

[126] Chengwen Xu, Xiangyu Wu, Wenqi Yin, Qiang Xu, Naifeng Jing,
Xiaoyao Liang, and Li Jiang. 2017. On Quality Trade-off Control for
Approximate Computing using Iterative Training. In Proc. of Interna-
tional Design Automation Conference (DAC). 1–6.

[127] Ran Xu, Jinkyu Koo, Rakesh Kumar, Peter Bai, Subrata Mitra, Sasa
Misailovic, and Saurabh Bagchi. 2018. Videochef: efficient approxi-
mation for streaming video processing pipelines. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18). 43–56.

[128] Siyuan Xu and Benjamin Carrion Schafer. 2017. Exposing Approxi-
mate Computing Optimizations at Different Levels: From Behavioral to
Gate-Level. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 25, 11 (2017), 3077–3088.

[129] Amir Yazdanbakhsh, Kambiz Samadi, and H Esmaeilzadeh. 2018.
SnaPEA: Predictive Early Activation for Reducing Computation in
Deep Convolutional Neural Networks. In Proceedings of the 45th Inter-
national Symposium on Computer Architecture (ISCA).

[130] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization,
Selection and Prioritization: A Survey. STVR 22, 2 (2012), 67–120.

[131] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating
Failure-Inducing Input. TSE 28, 2 (2002), 183–200.

[132] Chaoqiang Zhang, Alex Groce, and Mohammad Amin Alipour. 2014.
Using Test Case Reduction and Prioritization to Improve Symbolic
Execution. In ISSTA. 160–170.

[133] Hengyu Zhao, Linuo Xue, Ping Chi, and Jishen Zhao. 2017. Approxi-
mate Image Storage with Multi-level Cell STT-MRAM Main Memory.
In 2017 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD). 268–275.

[134] James F Ziegler and Helmut Puchner. 2004. SER–history, Trends and
Challenges: A Guide for Designing with Memory ICs. Cypress.

https://cs.illinois.edu/approxilyzer
http://www.simics.net

	Abstract
	1 Introduction
	2 Background
	2.1 Relevant Software Testing Techniques
	2.2 Approxilyzer

	3 Minotaur
	3.1 Input Quality
	3.2 Input Minimization
	3.3 Error-Injection Prioritization
	3.4 Input Prioritization

	4 Methodology
	4.1 Evaluation Infrastructure and Workloads
	4.2 Input-Quality Criteria
	4.3 Input Minimization
	4.4 Accuracy Analysis
	4.5 Error-Injection Prioritization
	4.6 Input Prioritization
	4.7 Runtime Analysis of Minotaur

	5 Results
	5.1 Input Minimization
	5.2 Error-Injection Prioritization
	5.3 Minimization Plus Injection Prioritization
	5.4 Input Prioritization

	6 Minotaur Extensions
	6.1 Extension to Approximate Computing
	6.2 Selective Instruction Analysis

	7 Related Work
	8 Conclusion and Future Work
	References

