
Towards More Precision in Approximate Computing ∗

Radha Venkatagiri Abdulrahman Mahmoud Sarita V. Adve

University of Illinois at Urbana-Champaign

{venktgr2,amahmou2,sadve}@illinois.edu

Imperfect Moore’s law scaling has led to recent trends
that consider systems that generate incorrect outputs. The
emergent field of approximate computing considers deliber-
ate, but controlled, relaxation of correctness for better per-
formance, energy or reliability. While the fast growing pop-
ularity of the field indicates the general acceptance, even ea-
gerness, for the idea, there are many hurdles to the prac-
tical application of approximate computing in today’s sys-
tems that are preventing it from realizing its full potential.
Many of these hurdles will naturally be surmounted by the
evolution of the field, but it is imperative that a strong fun-
damental base be established upon which future research di-
rections can be built. In this paper we highlight some of the
challenges faced by approximate computing, namely, stan-
dardized benchmarks, output error evaluation and reducing
programmer burden through automation.

Standardized Benchmarks and Output Error
Evaluations
Key among the challenges are the unavailability of standard-
ized benchmark suites and standards for evaluating the error
in their outputs. While benchmarks used in different ap-
proximation techniques are emerging [1, 2] and can guide
application selection, there is a need for formalizing stan-
dard benchmark suites that can be consistently used for fu-
ture works in approximate computing and enable an apples
to apples comparison of techniques. There is also a crucial
need to standardize the methodology for evaluating the er-
rors introduced in the output of these benchmarks due to ap-
proximation.

Error Metrics: Approximation techniques are often mea-
sured based on how much accuracy is lost in the final out-
put. There are many error metrics that may be used to mea-
sure this accuracy loss [3]. The choice of the error metric
is application-specific and even within a single application,
there may be different applicable metrics.

For instance, let us consider the PARSEC benchmark Blacksc-
holes which produces the pricing for a portfolio of European
options. Depending on the input size, the portfolio can con-
sist of anywhere between 4,096 and 65,536 options. The
first question that arises is how to calculate the error (in-
troduced by the approximation technique) in a given option
∗This work was supported in part by the National Science Founda-
tion under Grant CCF-1320941 and by the Center for Future Archi-
tectures Research (C-FAR), one of six centers of STARnet, a Semi-
conductor Research Corporation program sponsored by MARCO
and DARPA.

price? Should we calculate the absolute dollar value differ-
ence between the approximately calculated output (approx-
imate output) and the precise output (golden output)? Or
should we calculate the error relative to the golden output?
While relative error may be appropriate in some cases, it
may be unreasonable in cases where even small relative er-
rors lead to tangible losses in dollar amounts. For example,
in certain scenarios where only errors up to a few cents on
the dollar amount may be acceptable, using the absolute er-
ror difference as the metric is the right choice. Perhaps, a
combination of the two maybe the most appropriate metric
in certain contexts.

Aggregating Error: Once an error metric is chosen for
part of the entire output (the price of an individual option
for Blackscholes), we then need to determine how to com-
bine the errors for all parts of the output (all option prices in
the considered portfolio for Blackscholes) to give the aggre-
gate error for the considered approximation technique. For
Blackscholes, with a large portfolio of options, calculating
the average error across all option prices can undermine sig-
nificant and often unacceptable errors in individual option
prices. In this case, considering both the average and the
maximum individual error may be the best strategy in deter-
mining the acceptability of the final (approximate) output.

Error Threshold: The final step is choosing an accept-
able threshold to bound errors in the benchmark outputs.
Often, an error threshold of around 10% is indiscriminately
used [1, 2, 4, 5, 6], but this threshold may be too large to
be practical in many real world scenarios. In Blackscholes,
for example, 10% error in a $20 option is $2, which may
be an unacceptable error margin for many financial trans-
actions. Even a 3-5% error threshold may be too much for
some types of applications. While there are techniques that
use lower error bounds [7, 8], we need to be much more
aggressive as a community in defining what is an accept-
able error. Erring on the side of caution and tightening error
margins as much as possible might be a good strategy for
many applications but it might be needlessly conservative
for others. Selection of these parameters is currently largely
ad-hoc. We need systematic domain studies to standardize
acceptable error thresholds.

In summary, there is little consensus in what is the right
approach to evaluate the accuracy loss for a given applica-
tion. Blackscholes has simple numerical outputs and a rel-
atively straightforward usage model; it still poses several
questions on which error metrics, error aggregation tech-

niques, and error thresholds to use. These questions are
harder to answer in other applications that may utilize sen-
sory inputs and outputs such as audio and video. While these
applications have a lot of potential for approximate comput-
ing, gauging and bounding errors in these is even more dif-
ficult without understanding how the final outputs are used.
Hence, it is imperative that an agreement is reached by the
community in defining benchmarks and standardizing the
methodology to evaluate the errors in their output.

Programmer Expertise and Automation
Widespread adoption of approximate computing is hampered
by its lack of application to a wide variety of programs and
users. A significant reason for this is the need for expert
programmer knowledge to distinguish locations in the ap-
plication which may be amenable to approximation versus
those that need precise computation [1, 9, 10]. As a re-
sult, many potential opportunities for approximation may be
overlooked due to insufficient or inaccurate application in-
formation. While minimal programmer input such as end-
to-end error metrics for the final application output and the
acceptable error thresholds are necessary, it is unreasonable
to expect the programmer to provide details at the instruc-
tion and data level for approximation. Relieving the pro-
grammer of this burden will open up many new programs
to the potential benefits of approximations. There is a need
for automated end-to-end frameworks which can be used by
even a novice programmer to find and exploit approximation
opportunities (if any) in an application.

Recently, there has been an emergence of approximate
computing frameworks [11, 12, 13] that allow programmers
to specify high level constraints on kernel outputs and au-
tomatically generate approximate programs that can run on
given approximate hardware with known hardware reliabil-
ity specifications while providing guarantees on error bounds [11,
12]. These end-to-end techniques are a promising step to-
wards generating automated frameworks but require some
expertise from the programmer in identifying approximate
functions/kernels in a large application and burden them with
a new programming model.

We are developing a tool called Approxilyzer that can be
used by novice programmers to gauge the first order approx-
imation potential of their application with no program anno-
tations or modifications. Approxilyzer analyzes a program
to provide the programmer with a set of instructions that may
be candidates for approximation. Approxilyzer does this
by eliminating instructions that generate unacceptable er-
rors (either catastrophic or with error magnitude larger than
what is deemed acceptable by the user) in the presence of
single bit errors. The underlying argument that Approxi-
lyzer makes is that if an instruction produces an unaccept-
able quality output in the presence of single bit corruptions,
then it is highly unlikely to generate an output of accept-
able accuracy with more vigorous perturbations introduced
by approximation. After eliminating the instructions that
produce unacceptable outputs, the remaining instructions are
identified as potential first order candidates for approxima-
tion that can be further analyzed by the programmer using
other software or hardware techniques.

The Approxilyzer framework extends the resiliency tool

Relyzer [14] towards application in approximate computing.
Relyzer uses a combination of fault injections and program
analysis to determine the outcome when a single-bit fault
is injected in a given bit pertaining to a given dynamic in-
struction (referred to as a fault site) in an execution. Us-
ing program analysis and some heuristics, Relyzer identifies
fault sites that behave similarly in the presence of faults and
groups these together into an equivalence class. It then per-
forms a fault injection experiment on just one representative
fault site and uses its result to predict the outcome for all
the fault sites in the equivalence class. Hence, Relyzer is
able to predict the resiliency characteristics of virtually all
the fault sites in the application with relatively few fault in-
jection experiments. The outcomes predicted by Relyzer in-
clude whether the fault will be masked, detected, or produce
a Silent Data Corruption (SDC). Approxilyzer expands upon
Relyzer by introducing the notion of quality to the SDCs
based on how far the corrupted output deviates from the fault
free execution’s output. It estimates, with high confidence,
the range of program output errors caused by each individ-
ual instruction in the application. Armed with the informa-
tion, Approxilyzer can now automatically identify instruc-
tions that may be amenable to approximation based on their
effect on the program output. Using Approxilyzer, the ex-
ploration space of instructions to consider for approximation
can be significantly reduced and it can help programmers
identify code segments for more targeted experiments.

We envision a tool like Approxilyzer being an intrinsic
part of the front-end of a larger systematic and automated
framework for approximate computing that will incorporate
a single work-flow – from analyzing an unknown applica-
tion for approximation opportunities to exploiting them by
using the most optimal technique (software or hardware) to
satisfy given accuracy constraints. There are many ques-
tions that will arise in the process of building this workflow,
some of which are as follows – What role will the com-
piler or runtime play in such a framework? What is the best
axis of approximation – instruction or data – and what is
the right granularity at which to consider instructions and/or
data? How do we deal with input dependency? How do
we make individual techniques modular so they can be in-
tegrated into a single workflow? We urge the community
to strive towards building such systematic end-to-end frame-
works while working on individual techniques that we hope
will serve as essential building blocks in this larger goal.

Conclusion
As the field of approximate computing matures, we as a
community need to address some key concerns that are plagu-
ing it. Only by standardizing benchmarks, refining error
evaluation methodologies, and building systematic frame-
works that make it easy for programmers of all skill levels to
automatically apply approximation techniques can we fur-
ther the field to have widespread and lasting impact. With-
out these we are doing this much promising field a disservice
that will prevent approximate computing from truly achiev-
ing its potential. One thing is clear – while our techniques to
achieve performance and energy efficiency can be approxi-
mate, the tools and methodology used to apply and evaluate
them cannot.

2

REFERENCES
[1] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and

D. Grossman, “Enerj: Approximate data types for safe and general
low-power computation,” in Proceedings of the 32Nd ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11, 2011.

[2] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural
acceleration for general-purpose approximate programs,” in
Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM
International Symposium on, pp. 449–460, 2012.

[3] U. R. K. Ismail Akturk, Karen Khatamifard, “On quantification of
accuracy loss in approximate computing,” in Workshop on
Duplicating, Deconstructing and Debunking (WDDD), 2015.

[4] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke,
“Sage: Self-tuning approximation for graphics engines,” in
Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-46, 2013.

[5] J. S. Miguel, M. Badr, and N. E. Jerger, “Load value approximation,”
in Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014.

[6] J. San Miguel, J. Albericio, A. Moshovos, and N. E. Jerger,
“Doppelganger: A cache for approximate computing,” in
International Symposium on Microarchitecture, 2015.

[7] D. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An
online quality management system for approximate computing,” in
Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual
International Symposium on, pp. 554–566, June 2015.

[8] A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and
H. Esmaeilzadeh, “Neural acceleration for gpu throughput
processors,” in Proceedings of the 48th International Symposium on
Microarchitecture, 2015.

[9] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative
reliability for programs that execute on unreliable hardware,” in
Proceedings of the 2013 ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages &
Applications, OOPSLA ’13, 2013.

[10] J. Bornholt, T. Mytkowicz, and K. S. McKinley, “Uncertain: A
first-order type for uncertain data,” in Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, 2014.

[11] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard,
“Chisel: Reliability- and accuracy-aware optimization of
approximate computational kernels,” SIGPLAN Not., vol. 49,
pp. 309–328, Oct. 2014.

[12] J. Park, X. Zhang, K. Ni, H. Esmaeilzadeh, and M. Naik, “Expax: A
framework for automating approximate programming,” in Technical
Report, Georgia Institute of Technology, 2014.

[13] B. Boston, A. Sampson, D. Grossman, and L. Ceze, “Probability type
inference for flexible approximate programming,” vol. 50, (New
York, NY, USA), pp. 470–487, ACM, Oct. 2015.

[14] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran,
“Relyzer: Exploiting Application-Level Fault Equivalence to
Analyze Application Resiliency to Transient Faults,” in Proc. of
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2012.

3

