
Verification and Synthesis of Firewalls Using SAT
and QBF

Shuyuan Zhang, Abdulrahman Mahmoud, Sharad Malik
Princeton University

{shuyuanz, mahmoud, sharad}@princeton.edu

Sanjai Narain
Applied Communication Sciences

snarain@appcomsci.com

Abstract—Firewalls are widely deployed to safeguard the
security of networks and it is critical for enterprise networks to
have firewalls to prevent malicious attacks and to guarantee the
normal functioning of the network. Firewalls prevent dangerous
packets from entering the inner network by looking up the
Access Control List (ACL) to permit or drop certain packets.
However, ACLs often suffer from redundancy problems, which
can degrade the performance of firewalls and the network.
The contribution of this paper is threefold: 1) we present a
Boolean Satisfiability (SAT) based technique that can compare
the equivalence and inclusion relationship between two firewalls,
which is very valuable for the testing between a given firewall
and an optimized one, 2) we present a technique to discover
redundancies within a firewall, and 3) we formulate the ACL
optimization problem as a Quantified Boolean Formula problem
(QBF) and explore its practical application using a QBF solver.

ACKNOWLEDGMENTS

This work has been funded by Air Force Research Labora-
tory under contract FA8750-11-C-0012.

I. INTRODUCTION

Firewalls are very common in modern networks and most
private networks utilize a firewall to protect and monitor in-
coming and outgoing traffic, using a set of rules developed by
a network administrator. Firewalls help filter contact between
a network and the rest of the Internet, dropping packets that
do not satisfy the priority rules outlined by an administrator.
These rules are designed to examine certain fields of a packet
header, and subsequently either forward the packet if it is on
the “permit” list, or drop the packet if it is not included in the
set of acceptable rules.

However, one issue that plagues firewalls is that these rules
are not always optimized, with many firewalls containing
redundancies in the rule set [1]. Additionally, firewalls often
contain policy errors which are difficult to detect due to the
lack of available policy verification tools, thus compromising
the security of the network [2]. Firewall verification entails
using formal analysis for ensuring that a set of firewall
policy rules are consistent with a specification, and includes
checking for redundancies within a firewall and equivalence
checking between firewalls. Firewall verification can assist in
discovering superfluous policy rules that can slow down the
travel time of packets to and from a network. Verification
can also help ensure that even if a rule set does not contain
any conflicts, it is prioritized in the correct sequence to avoid
undesired packet denial. Additionally, one can use inclusion

checking to determine if one firewall has a stricter policy than
another firewall by permitting only a subset of packets allowed
by the second firewall.

In this paper, we present a SAT based method of firewall
verification for equivalence checking between two firewall
rule sets to check if they have the identical behavior for
every incoming packet. We also use our SAT-based verification
tool for inclusion checking between two firewalls, which is
very helpful in checking if one firewall has a stricter policy
than another firewall. We also demonstrate the application
of verification in detecting redundancy in a firewall. We
additionally present a firewall synthesis method based on a
Quantified Boolean Formula (QBF) formulation and use a
QBF solver to synthesize an optimal firewall. This paper
is organized as follows: Section II presents the background
of this paper, i.e. an overview of the firewalls that we are
targeting. Section III and section IV discuss the technical
details on encoding the firewalls and verification properties
as logic formulas. Following the discussion of the encoding,
we present experimental data that tests our encoding and
formulation in section V. Next, we discuss the related work
and finally draw conclusions in section VI and section VII.

II. BACKGROUND

A. Firewalls

The firewalls that we are studying in this paper are ab-
stracted as a one-input one-output device that can model both
software-based and hardware-based firewalls. A firewall takes
packets from the network as an input and returns the decision
about whether the packets should be dropped or permitted.

The main component of a firewall is a matching table, which
is composed of strictly prioritized matching rules. By strictly
prioritized, we mean that there do not exist two rules that
have the same priority. If a packet matches a rule, that rule
will automatically dominate all the rules with lower priorities.
It also means that the packet does not match any rules with
higher priorities.

Each matching rule has two fields, one matching field
and one action field. The matching field determines which
of the packets should be processed by this rule and it is
usually in the packet header information. Packet payload is not
considered although there are firewalls that require application-
layer information to make a decision. For simplicity, we do
not consider this case here. The matching field can be quite



flexible. For example, we can include source/destination IP
prefixes and source/destination TCP/UDP port number in the
matching field. The matching field is represented using a flat
ternary array. A ‘1’ or a ‘0’ entry match a ‘1’ or a ‘0’ in the
corresponding header, respectively. We use the wildcard ‘x’ to
represent a match to both ‘0’ and ‘1’. For example, consider
a matching field that has two eight-bit prefix addresses, 224/3
and 120/5. 224 is 11100000 and 120 is 01111000 so 224/3
is 111xxxxx and 120/5 is 01111xxx. Then, the matching field
is (111xxxxx01111xxx). The action of a firewall is simply
“drop” or “permit”, which specifies whether the packet should
be dropped or not.

The matching table is considered to be completely static
during verification. Although stateful firewalls usually change
state during operation, they can be regarded as static between
two matching rule updates. Hence our firewall is a snapshot
of stateful firewalls at a single instance of time.

B. Firewall Verification and Synthesis

1) Firewall Equivalence Checking: One of the major prop-
erties that is studied in this paper is firewall equivalence. Given
two firewalls, we determine if they have identical behavior,
i.e. they drop/permit exactly the same set of packets. This
is an important property because it can be used in firewall
optimization to compare whether a given firewall and an
optimized firewall are identical. The fundamental principle in
firewall equivalence checking is trying to find the difference
between two firewalls. If no differences exist between them,
the two are equivalent.

2) Firewall Inclusion Checking: Another relationship be-
tween two firewalls is inclusion. If firewall A permits only
a subset of the packets permitted by firewall B, then we
say firewall A is stricter than firewall B since it drops more
packets. Often, when we want to replace one firewall with
another, we have to make sure that the new firewall does not
sacrifice the security requirements of the old one and is at
least as strict as the replaced firewall.

3) Firewall Rule Redundancy Checking: A firewall may
also have redundant rules within its own matching table [3].
We define a redundant rule as one that once removed from the
rule set produces a matching table that is logically equivalent
to the original ruleset. For example, one rule may accept
packets destined to 10.0.0.0/32 while another rule accepts all
packets destined to 10.0.0.0/24. In this case, if the first rule is
removed, all packets destined to 10.0.0.0/32 are still accepted
by the latter rule, rendering the first rule redundant.

4) Firewall Synthesis: Firewall synthesis is concerned with
synthesizing a firewall with exactly the same behavior as a
given firewall such that the synthesized firewall’s specifications
have the smallest number of rules installed. Here, we use a
Symbolic Firewall, which is parameterized in the number of
the rules. The advantage of a symbolic firewall is that we can
use variables to program the firewall and an optimal synthesis
determines the values of the variables and thus the rules. We
leave all the technical details for the following sections.

Fig. 1. The Overview of Firewall Encoding

III. FIREWALL EQUIVALENCE, INCLUSION, AND
REDUNDANCY CHECKING

In this section, we discuss the details of how we check
the equivalence and inclusion between two firewalls, and
redundancy checking within a firewall. We will first present
how to encode a fixed firewall, in which all the rules are given
and fixed and then we will present how to use the encoding
of a fixed firewall to do firewall equivalence, inclusion, and
redundancy checking.

A. The Encoding of Fixed Firewalls

Figure 1 depicts the basic structure of our firewall encoding.
As mentioned in section II, the firewall is a one-input one-
output device. The input is a packet, which is modeled as a
set of Boolean variables. We use bi, i ∈ [1, Ninput] to represent
the Boolean variable for the input bit i and Ninput is the total
number of input bits needed for the packet. The input packet
is fed to the matching table. Since every rule in the firewall
is prioritized, the matching table is essentially a matching
rule chain. Every rule has two outputs, one match var that
indicates if the packet does not match any of the previous rules
and it matches the current rule, and one total match var that
tells the next rule if the packet has matched previous rules or
the current rule. This total match var is fed to the next rule
in the matching table.

We use mi to represent the match var for rule #i, where
i ∈ [1, Nrule] and Nrule is the total number of rules, and
use pi to represent the total match var for rule #i, where
i ∈ [2, Nrule] and pi is the input of rule i and the output of
the rule i − 1. As described in section II, the matching field
in every rule is composed of ‘0’, ‘1’, and ‘x’. We use ri,j to
represent the value of the matching field bit for rule #i and bit
j and we use ki,j to represent the formula of that bit. Then

ki,j =

 bj if ri,j is 1
¬bj if ri,j is 0
TRUE if ri,j is x

(1)

If ri,j is 1, it specifies that the matching bit matches 1, which
is the positive phase of the input bit bj . Similarly, if it is 0, it
matches the negative phase of the input bit. If it is an ‘x’, it
matches both cases, which is always true. The match bit can
be calculated as:

mi =

Ninput∧
j=1

ki,j

 ∧ (¬pi) if i ≥ 1 (2)

pi =
{

FALSE if i == 1
mi−1 ∨ pi−1 if i ≥ 2 (3)

Approved for Public Release; Distribution Unlimited: 88ABW-2012-4885, 12-Sep-2012



Fig. 2. Encoding Example

Then the output of the firewall, F(B) is

F(B) =
∨

i∈Spermit

mi (4)

where B = {b1, ..., bNinput
} and Spermit is the set of rules

with an action of ‘permit’. If the formula evaluates to 1, the
firewall permits the packet; otherwise, it drops the packet. We
make the assumption that the default rule is a ‘drop’ rule,
which means that all the packets which do not match any
rules specified in the firewall will be dropped by default.

Consider the simple example depicted in Figure 2. Suppose
we have a firewall with 3 rules and each rule has a matching
field of 4 bits. The rules are in the order (1010, permit), (100x,
drop), and (0xxx, permit). Thus, p1 = FALSE, m1 = b1 ∧
(¬b2)∧ b3 ∧ (¬b4)∧ (¬p1), p2 = m1 ∨ p1, m2 = b1 ∧ (¬b2)∧
(¬b3) ∧ (¬p1), p3 = m2 ∨ p2, m3 = (¬b1) ∧ (¬p3), and
F(b1, b2, b3, b3) = m1 ∨m3.

To encode a firewall with Nrule rules in it, the variables
required are simply mi, pi, and bi and hence, the total number
of variables are about the sum of the total number of the three
variables. Each rule has one mi and pi and we have Nrule

rules. Each input bit has one bi and we have Ninput input bits.
Thus, the total number of variables required is 2 × Nrule +
Ninput. We use the Conjunctive Normal Form (CNF) formula
representation and the Tseitin Transformation [4] to convert
the expression in formula 4 into a CNF formula. The number
of CNF clauses required depends on how many wildcards, i.e.
‘x’, appear in each rule. If on average there are Nwildcard

wildcards in each rule, the total number of CNF clauses is
about (Ninput −Nwildcard)×Nrule, since if it is a wildcard
the clause is always true, which is a trivial case. The reason
is that most of the operations in the encoding are AND and
OR and the number of CNF clauses used to encode an AND
or OR operation is the number of input variables plus 1.

B. Firewall Equivalence and Inclusion Checking

To check if two firewalls are equivalent, we can use an XOR
operation to connect the output of the two firewalls and see
if it is different. For example, given two firewalls F1(B) and
F2(B), if F1(B)⊕F2(B) is satisfiable, it means there exists
at least one input packet B, such that the two firewalls differ
in their actions; otherwise, there is no such packet that exists.

To check inclusion, we need a formula that can only return
false if the stricter firewall returns true but the other firewall
returns false. Thus, ¬(F1(B) → F2(B)) checks if firewall 2
includes firewall 1. If this formula is unsatisfiable, this means
that firewall 1 can never permit a packet that is blocked by
firewall 2, i.e. firewall 1 permits a subset of packets permitted

by firewall 2 and it is stricter than firewall 2. If it is satisfiable,
the satisfying assignment to the input packet bits serves as a
counterexample for the inclusion property.

C. Firewall Rule Redundancy Checking

To check if a firewall contains redundancies amongst its
rules, we need to check whether a matching table created by
the removal of a rule (or multiple rules) is equivalent to that
of the original unmodified matching table. We add a control
bit for each rule so that we can control whether that rule is
present in the ruleset or not. We use oi to represent the control
bit and the formula for mi is

mi =

Ninput∧
j=1

ki,j

 ∧ (¬pi) ∧ (¬oi) if i ≥ 1 (5)

If oi is 0, the rule behaves just like a normal rule but if it is
1, that rule will never match any packets and can be regarded
as a discarded rule.

Then we can use the array of the control bits to do
redundancy removal. We start from the first rule and make its
control bit to be 1 and compare the equivalence between the
new firewall and the original firewall. If they are equivalent,
it means the first rule is redundant and can be removed. Then
we keep the control bit for the first rule as 1 and do the same
procedure for the second rule and so on until we find all the
assignments to the control bits. This results in a minimal set
of rules, i.e there is no subset of the final set of rules that is
equivalent to the original firewall. However, this may not be
a minimum subset, i.e subset of the least cardinality, as the
rules were removed in a specific order.

IV. FIREWALL SYNTHESIS

For the firewall synthesis problem, we use a symbolic
firewall with rules represented as symbols instead of being
fixed and compare it against the given firewall, which serves
as a specification. If we can find an assignment for all symbols
such that we can make the two firewalls equivalent, then these
symbol values serve as the rules definition of the new firewall.

A. The Encoding of Symbolic Firewalls

The difference between a fixed firewall and a symbolic
firewall is that the symbolic firewall has symbols instead of
fixed rules. Thus, the symbolic firewall has two sets of inputs:
one packet which is the same as the fixed firewall, and one
set of input symbols which is used to program the firewall.
The output is a single binary bit to indicate the action of the
firewall.

The structure of the matching table of a symbolic firewall
is the same as that of a fixed firewall but the number of
matching rules is parameterized, which means that Nrule

becomes a variable, and we use n to represent it. The encoding
of matching rules is completely changed and as a result the
formulas for mi and pi do not change but the formula for ki,j

becomes

ki,j = (v1
i,j ∧ bj) ∨ (¬v1

i,j ∧ ¬bj) ∨ v2
i,j (6)

Approved for Public Release; Distribution Unlimited: 88ABW-2012-4885, 12-Sep-2012



where v1
i,j and v2

i,j are the two variables to program the bit at
rule #i and bit j. It captures that if v2

i,j is 1, ki,j evaluates to
TRUE to capture the ‘x’ case. If v1

i,j is 0, ki,j equals to ¬bj ;
otherwise, it is bj to capture the ‘1’ case.

The action of each rule is made symbolic using variable v3
i .

For every rule, the output action is v3
i ∧mi. It means it is a

permit rule as long as v3
i evaluates to TRUE. Therefore, the

output of the symbolic firewall Fs(B, n, V ) is

Fs(B, n, V ) =
∨

i∈Sall

v3
i ∧mi (7)

where V is the set of all variables v1, v2, and v3 and Sall is
the set of all rules.

The total number of Boolean variables required to encode a
symbolic firewall with n rules is about 2×Ninput×n+3×n+
Ninput. Since we need 2 variables to represent each matching
bit, in total we have Ninput × n such bits. For each rule, we
need another variable to encode the action and together with
mi and pi, we have an extra 3 variables for each rule.

B. Firewall Synthesis

We encode a symbolic firewall with n rules and find V
such that the symbolic firewall is equivalent to the given fixed
firewall, which serves as the specification. Here we use a
Quantified Boolean Formula (QBF) formulation to determine
the assignments for V .

Given a firewall F(B) and a symbolic firewall with n
rules installed Fs(B, n, V ), we need to find an assignment
for all variables in V such that for every input packet B,
¬(F(B) ⊕ Fs(B, n, V )) is satisfiable, and there exists an
equivalent firewall to the given one with n rules installed.
Expressed as a QBF formula, it becomes

∃V ∀B : ¬(F(B)⊕Fs(B, n, V )) (8)

If the QBF solver returns satisfiable for this formula, we can
build an equivalent firewall with n rules installed and the
assignment to the V variables that makes the formula true
defines the rules; otherwise, there does not exist such firewall.
To find a firewall with the smallest number of rules installed,
we do a binary search on the number of rules n.

V. EXPERIMENTS

We used Minisat [5] as our SAT engine to check for
equivalence and inclusion between two generated firewalls and
we use BDepQBF [6] as our QBF solver for firewall synthesis.
These are considered amongst the fastest SAT and QBF solvers
respectively based on results of tool competitions [7], [8]. All
experiments are run on Gentoo Linux with kernel 3.4.4. We
used an AMD Phenom 3.3 GHz processor with 8 gigabytes
of RAM for these experiments.

To construct different firewalls to test, we used the Class-
Bench benchmark generator [9]. The ClassBench program
allows the user to input several different parameters for priority
rule generation. For our experiments, we used the firewall
parameter file input to simulate real firewall rule sets, available
with the downloadable benchmarks. Additionally, we were

provided with three input parameters to set, which expanded
upon the parameter file: the address scope, the application
scope, and the smoothness of the generated rule set. The
address scope adjusts the bias of how specific address prefixes
are, indicating whether longer or shorter prefixes are desired.
The application scope affects the protocol specifications of
the rule, and the smoothness value determines the distribution
of prefixes across the protocol. For simplicity, we kept all
three parameters at their default value: uniform address scope,
uniform application scope, and default smoothness as set by
the parameter input file.

The matching rules generated by ClassBench have 6 fields,
which are source/destination IP addresses, source/destination
ports, protocol, and flags. In total, they account for 136
matching bits, i.e, Ninput is 136.

A. Equivalence Checking

In order to test our SAT based equivalence checker, we
wanted to generate two firewalls which were very similar
to one another, but with subtle differences. This represents
the difficult care for equivalence checking.We first used the
ClassBench program to create rulesets of size 50 to 26000.
We made a copy of each of these rulesets, but with a small
mutation. We tested for three different types of mutations:

1) Flipping a random bit in the firewall.
2) Deleting one random rule in the firewall.
3) Swapping two random rules in the firewall.

For the first mutation, we chose a random bit in the entire
ruleset, and depending on its value, flipped it to one of the
other two bits. If the random bit was an ‘x’ , we demoted it
to either a 0 or a 1, with equal probability. If the random bit
was either a zero or a one, we promoted it to an x.

For the second mutation, we uniformly chose one random
rule, and removed it from the ruleset. This mutation was
chosen to see how well the equivalence checker could pick up
a slight difference between two rulesets that are very similar.

For the third and final mutation, we chose two random rules
uniformly, and swapped their positions. Since the original rule-
set is prioritized, the swapping of two rules could potentially
cause a portion of the ruleset to be totally ignored, as a higher
prioritized rule is assumed to be more specific than any rule
below it in priority.

Figure 3, 4, and 5 show the results. As we can see,
the execution time increases as the total number of rules
grows since the formula size becomes larger. SAT cases (not
equivalent) are generally faster than UNSAT cases (equivalent)
since for SAT it often only explores part of the search tree.
Another thing to note is that all the data points scatter around
the plane and it is because the benefit of the heuristics built
inside the SAT engine can differ from case to case. Sometimes
when we are lucky, it is even faster to check a larger test
case. The one that executes the longest is the UNSAT case for
mutation 3 with about 26000 rules. It takes about 48 minutes
to finish. The SAT instance has a total of 103843 Boolean
variables and 5.2 million CNF clauses.

Approved for Public Release; Distribution Unlimited: 88ABW-2012-4885, 12-Sep-2012



Fig. 3. Mutation 1: Flipping a random bit.

Fig. 4. Mutation 2: Deleting one random rule.

B. Inclusion Checking

To check for inclusion of one firewall ruleset within another
ruleset, we again began by developing a set of differently
sized benchmarks. We then created a new firewall for each
benchmark by removing the lowest priority 10% of the rules.
Since it permits fewer packets to go through, our inclusion
checking tool can only return UNSAT (i.e. the inclusion check
will pass). Figure 6 plots the execution time.

Fig. 5. Mutation 3: Swapping two random rules.

Fig. 6. Inclusion Checking

Total Rules Redundant Time Percent
Rules (Sec) Redundancy

130 29 2.228 22.3%
286 180 15.357 62.9%
438 268 66.245 61.2%
702 447 237.368 63.7%
887 627 479.874 70.7%

1007 773 743.023 76.8%
1135 757 953.684 66.7%
1355 870 2080.754 64.2%
1753 1167 4938.189 66.6%
1932 1371 5004.529 71.0%

TABLE I
REDUNDANCY REMOVAL RESULTS

C. Rule Redundancy Checking

To check for redundancies within a set of firewall rules, we
took our original ClassBench files and attempted to remove
rules one at a time to reduce the size of the matching table. We
attempted to remove the largest cumulative set of rules while
maintaining equivalence to the original ruleset. This process
was relatively slow, as shown in Table I. For a matching table
with almost 2000 rules, the process took about 83 minutes
and found approximately 1400 redundancies. This means that
were we to remove all redundancies found, the matching table
would behave identically to the full set, albeit much smaller in
size. Another interesting thing to notice is that the percent of
redundant rules is very high and the reason is that the default
action for a packet that does not match any rules is “drop”.
Therefore, we can remove all of the rules that have an action
of “drop” and have no overlap with other “permit” rules.

D. Firewall Synthesis

The firewall synthesis is prohibitively slow and the speed
slows down dramatically as the size of the input packet grows.
This is because in our QBF formula we have a universal quan-
tification for the input packet bits. It can manage the firewall
size of 20 input packet variables and 3 rules (Ninput = 20,
n = 3, and the size of V is 123) in about 10 minutes but it
times out for a size of 25 variables. Thus, while the synthesis

Approved for Public Release; Distribution Unlimited: 88ABW-2012-4885, 12-Sep-2012



problem can be encoded as a QBF problem, even simple
instances are beyond the reach of the best current QBF solvers.

VI. RELATED WORK

In the past few years, there has been some work in fire-
wall analysis and optimization. [10] proposed a method to
minimize the number of rules in Ternary Content-Addressable
Memories (TCAM), which are used for packet classification.
Similar to our method, they express the output of a TCAM
using a Boolean formula. They use Disjunctive Normal Form
(DNF) and two-level DNF optimization to minimize the
number of rules required. They implement a heuristic solver
because the size of the problem is too large to get an exact
solution. [3], [11], [12] propose to remove redundancies in
a firewall based on a decision tree but these techniques are
unable to compare firewalls and do not guarantee that they
are minimized. [13], [14] systematically summarize different
kinds of conflicts for both standalone and distributed firewalls.
There are also some older works that target optimizing IP
routing tables [15], [16]. Since an IP routing table can have
multiple routing decisions instead of only two decisions for
a firewall, IP routing table optimization is a harder problem
than firewall optimization in terms of problem size. However,
they use longest-prefix matching and it is difficult for them to
adapt to priority-based matching and they also did not propose
how to compare the relationship between two routing tables.
In a broader context, [17], [18] discussed about the verifica-
tion of general network properties, including reachability and
forwarding loops. [19], [20] have discussed how to use SMT
for firewall equivalence and inclusion checking and we plan
to compare the performance of the two encodings in the near
future.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a SAT based method that can
check the equivalence and inclusion relationship between two
firewalls and how to use SAT to remove redundancy in a
firewall. These techniques are shown to scale well for practical
sized firewalls using state-of-the-art SAT solvers. We also pro-
posed using a QBF formulation to solve the firewall synthesis
problem. Our formulation, even with the fastest QBF solvers,
is very slow. Our ultimate goal is to develop a run-time firewall
checking tool that can do firewall verification upon firewall
configuration changes but this will require significant tool
speedups. We are exploring the use of incremental verification
techniques for this purpose. Firewalls are a simple case of
a network middlebox and our technique can be applied to
network middlebox verification and synthesis. Since switches
and routers usually have several forwarding ports and routers,
in particular, are capable of modifying the packet header, a
more complex encoding is needed to model the middleboxes.
However, the fundamental principles remain the same.

REFERENCES

[1] H. Acharya and M. Gouda, “Firewall verification and redundancy
checking are equivalent,” in INFOCOM, 2011 Proceedings IEEE, april
2011, pp. 2123 –2128.

[2] A. Wool, “A quantitative study of firewall configuration errors,” Com-
puter, vol. 37, no. 6, pp. 62 – 67, june 2004.

[3] A. X. Liu, C. R. Meiners, and Y. Zhou, “All-match based complete
redundancy removal for packet classifiers in TCAMs,” in Proceedings
of the 27th Annual IEEE Conference on Computer Communications
(Infocom), Phoenix, Arizona, April 2008.

[4] T. G.S., “On the complexity of proof in prepositional calculus,” vol. 8,
pp. 234–259, 1968.

[5] N. Een and N. Sorensson, “An extensible sat-solver,” in Theory and
Applications of Satisfiability Testing, ser. Lecture Notes in Computer
Science, E. Giunchiglia and A. Tacchella, Eds. Springer Berlin /
Heidelberg, 2004, vol. 2919, pp. 333–336.

[6] F. Lonsing and A. Biere, “Depqbf: A dependancy-aware qbf solver,”
Journal on Satisfiability, Boolean Modeling and Computation, vol. 7,
2010.

[7] D. Le Berre and L. Simon, “The sat 2005 competition,” SAT Competi-
tion 2005. [Online]. Available: http://www.satcompetition.org/2005/

[8] N. Massimo, “Fifth qbf solvers competition,” Fifth Competitive
Evaluation of QBF Solvers. [Online]. Available: http://www.qbflib.org/

[9] D. Taylor and J. Turner, “Classbench: a packet classification benchmark,”
in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings IEEE, vol. 3, march
2005, pp. 2068 – 2079 vol. 3.

[10] R. McGeer and P. Yalagandula, “Minimizing rulesets for tcam imple-
mentation,” in INFOCOM 2009, IEEE, april 2009, pp. 1314 –1322.

[11] A. Liu, E. Torng, and C. Meiners, “Firewall compressor: An algorithm
for minimizing firewall policies,” in INFOCOM 2008. The 27th Confer-
ence on Computer Communications. IEEE, april 2008, pp. 176 –180.

[12] C. R. Meiners, A. X. Liu, and E. Torng, “Tcam razor: A systematic
approach towards minimizing packet classifiers in tcams,” in Proceed-
ings of the 15th IEEE International Conference on Network Protocols
(ICNP), Beijing, China, October 2007.

[13] E. Al-Shaer and H. Hamed, “Modeling and management of firewall
policies,” Network and Service Management, IEEE Transactions on,
vol. 1, no. 1, pp. 2 –10, april 2004.

[14] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict classifi-
cation and analysis of distributed firewall policies,” Selected Areas in
Communications, IEEE Journal on, vol. 23, no. 10, pp. 2069 – 2084,
oct. 2005.

[15] R. Draves, C. King, S. Venkatachary, and B. Zill, “Constructing optimal
ip routing tables,” in INFOCOM ’99. Eighteenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Proceedings.
IEEE, vol. 1, mar 1999, pp. 88 –97 vol.1.

[16] S. Suri, T. Sandholm, and P. Warkhede, “Compressing two-
dimensional routing tables,” Algorithmica, vol. 35, pp. 287–300, 2003,
10.1007/s00453-002-1000-7.

[17] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
static checking for networks,” in Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, ser.
NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 9–9.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2228298.2228311

[18] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and W. David,
“Abstractions for network update,” SIGCOMM Comput. Commun. Rev.,
Aug. 2012.

[19] S. Narain, R. Talpade, and G. Levin, Network Configuration Validation,
ser. Guide to Reliable Internet Services and Applications. Springer
Verlag, 2010.

[20] S. Narain, “Motivating constraint solving for networking,”
Formal Methods in Networking, Princeton University
Computer Science Seminar Course. [Online]. Available:
http://www.cs.princeton.edu/courses/archive/spring10/cos598D/FMINLecture3.pdf

Approved for Public Release; Distribution Unlimited: 88ABW-2012-4885, 12-Sep-2012


