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Abstract—Approximate computing environments trade off
computational accuracy for improvements in performance, en-
ergy, and resiliency cost. For widespread adoption of approxi-
mate computing, a fundamental requirement is to understand
how perturbations to a computation affect the outcome of the
execution in terms of its output quality.

This paper presents a framework for approximate computing,
called Approxilyzer, that quantifies the quality impact of a
single-bit error in all dynamic instructions of an execution with
high accuracy (95% on average). We demonstrate two uses of
Approxilyzer. First, we show how Approxilyzer can be used to
quantitatively tune output quality vs. resiliency vs. overhead to
enable ultra-low cost resiliency solutions (with a single bit error
model). For example, we show that Approxilyzer determines
that a very small loss in output quality (1%) can yield large
resiliency overhead reduction (up to 55%) for 99% resiliency
coverage. Second, we show how Approxilyzer can be used to
provide a first-order estimate of the approximation potential of
general-purpose programs. It does so in an automated way while
requiring minimal user input and no program modifications. This
enables programmers or other tools to focus on the promising
subset of approximable instructions for further analysis.

I. INTRODUCTION

The end of conventional technology scaling has led to two
recent trends that consider systems that generate incorrect
outputs. First, the emergent field of approximate computing
considers deliberate, but controlled, relaxation of correctness
for better performance or energy. Second, the increasing
threat to hardware reliability [4] and high costs of traditional
redundancy-based resiliency solutions has led to significant re-
search in alternative low cost, but less-than-perfect, solutions.
Specifically, software-anomaly based resiliency solutions use
low cost hardware or software detectors that watch for anoma-
lous software behavior as a symptom of a hardware fault [7],
[9], [13], [18], [26], [29], [42]. These solutions are promising
due to their ultra-low cost, but they occasionally let some
errors escape as silent data corruptions or SDCs. Computa-
tions resulting in such SDCs must be protected using other
techniques (e.g., instruction duplication or software assertion
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checks), thereby increasing cost. This additional cost can
be eliminated for SDCs that produce inexact, but acceptable
outputs.

For widespread adoption of both approximate computing
and software-anomaly based error detection, a fundamental
requirement is to understand how perturbations (deliberate
approximations or unintentional errors) to a computation affect
the outcome of the execution in terms of its output quality. We
refer to this as the perturbation-outcome problem. A “holy
grail” version of this problem is to be able to determine (1)
automatically (without undue programmer burden), (2) for any
general-purpose application, (3) for any perturbation model,
(4) a guaranteed impact on the end-to-end output quality
and the resulting improvement in performance, energy, and/or
resiliency cost. With such knowledge, the system or end-user
would have the ability to precisely make the desirable trade-
offs in quality, resiliency, performance, and resource usage.

Although solutions to the perturbation-outcome problem
that satisfy all four of the above requirements – automation,
general-purpose application, any perturbation model, and guar-
antees on impact – remain elusive, researchers have made sig-
nificant progress by relaxing some of these requirements. For
example, the signal and information processing communities
have a long history of using approximations tailored for their
application domains, but it is unclear how to extend this work
to general-purpose computations [30]. EnerJ [33] abandons
automation and guarantees – the programmer identifies ap-
proximable data and the system uses approximate hardware
for such data without quality guarantees. Chisel [22] uses so-
phisticated compiler analyses and integer linear programming
to determine when an instruction or data is approximable,
but requires the programmer to specify the probability with
which a function must execute correctly to generate acceptable
output. The framework provides mechanisms to automatically
generate such probabilities, but relies on limited error injec-
tion experiments which inherently cannot provide guarantees
(because it is prohibitively expensive to generate an error
injection experiment for every invocation of the function).
SAGE [31] monitors output quality deviations at run-time,
invoking more precise versions of the computation when
quality is deemed too low. Although fully automated, SAGE
is a reactive mechanism, where again it is difficult to provide978-1-5090-3508-3/16/$31.00 c© 2016 IEEE



quality guarantees for general-purpose applications. Section V
provides a comprehensive review of the literature to show that
past techniques make similarly limiting assumptions.

This paper proposes Approxilyzer, a framework that ad-
dresses the perturbation-outcome problem with assumptions
complementary to past work. Approxilyzer addresses the
above four requirements as follows. (1) It meets the au-
tomation requirement by relying on the programmer only
for the metric to determine end-to-end output quality (and
optional thresholds for acceptable quality). The quality metric
is domain- and not program-specific and a minimal input
for any solution to the perturbation-outcome problem. (2)
Approxilyzer is applicable to general-purpose computations.
(3) It provides guarantees on the impact of the studied pertur-
bations on the end-to-end output quality with high accuracy,
specifically targeting improvements in resiliency cost. (4)
Approxilyzer’s perturbation model is a single bit flip in an
operand (both source and destination) register of a dynamic
instruction. While this is a limited (albeit realistic) source
of perturbations, Approxilyzer is far more ambitious than
previous work in providing the quality impact of such a
perturbation on every operand register bit in virtually every
dynamic instruction in a program execution.

Approxilyzer builds on a recent resiliency-driven tool called
Relyzer [12] which uses a combination of error injection and
program analysis to predict the outcomes of errors, assuming
all deviations from the error-free output are unacceptable.
Relyzer also uses an instruction-level transient single bit error
model, and determines outcomes for all such errors in the
operand registers of all dynamic instructions. We use error
site to refer to a specific bit in a specific operand register in a
specific dynamic instruction. Using program analysis and some
heuristics, Relyzer identifies error sites that behave similarly
in the presence of a single-bit error and groups these together
into an equivalence class. It then performs an error injection
experiment on just one representative error site (called a pilot)
and uses its result to predict the outcome (masked, detected,
or SDC) for all the error sites in the equivalence class. Hence,
Relyzer is able to predict the resiliency characteristics of
virtually all the error sites in the application with relatively
few error injection experiments and high accuracy.

Approxilyzer builds upon Relyzer by introducing the no-
tion of quality, determining the quality degradation for each
predicted SDC, and applying this information in the areas of
low cost resiliency and approximate computing. It takes as
input an unmodified program (with input), a quality metric,
and an optional acceptable quality threshold, and produces a
comprehensive output quality profile. This profile provides the
outcome of a transient single bit error in each error site in an
execution. The outcome can be masked (an output is produced
and is the same as the golden error-free output), detected (e.g.,
a fatal trap was invoked), or an output corruption (an output
is produced, but is different from the golden output). For the
last case, Approxilyzer further categorizes the output as a
detectable data corruption (outputs that are visibly incorrect
and could be detected; e.g., a NaN) and SDC. The SDCs are

further binned into buckets based on the output quality.
We show two applications of Approxilyzer’s output quality

profile. First, for low-cost resiliency (assuming our error
model), we use the observation that error sites that result in
SDCs that are binned above an acceptable quality threshold do
not need any protection. We show how this observation can be
used by the programmer to quantitatively tune output quality
vs. resiliency vs. overhead to enable ultra-low cost resiliency
solutions.

Second, for a broader application of approximate com-
puting, we observe that an error site is not amenable to
approximation if it produces an outcome that is detected,
detectable, or an SDC binned below an acceptable quality
threshold. Although our error model is limited, it is reasonable
to assume that if even a single bit perturbation produces such
an unacceptable outcome, then a stronger perturbation will
likely also produce the same, making the error site an unlikely
candidate for approximation. Thus, Approxilyzer allows the
system or programmer to focus on the remaining error sites
(and constituent instructions) as candidates for approximation.
These sites may or may not result in acceptable outcomes with
stronger perturbations than single bit flips, but they provide
a smaller subset for further (and potentially easier) analysis
with other tools. This pruning of the space of approximable
instructions is particularly valuable since it is completely
automated – the only requirement from the programmer is
the end-to-end quality metric. Knowledge of a threshold for
acceptable quality is beneficial, but it is not necessary and can
also be conservative. The more conservative the threshold, the
more SDCs are deemed as not approximable (in the limit of no
threshold, all SDCs are deemed not approximable). In this way,
Approxilyzer enables a first-order, automated estimation of the
potential for approximation for any general-purpose program.

Overall, this paper makes the following contributions:
(1) We propose and implement Approxilyzer. To our knowl-

edge, this is the first tool that quantifies the quality impact of a
single-bit error in all dynamic instructions of an execution with
high accuracy. Our validation results show that Approxilyzer
can predict output quality at very fine granularities with high
accuracy (95% on average).

(2) We demonstrate how Approxilyzer can be used to
quantitatively tune output quality vs. resiliency vs. overhead
to enable ultra-low cost resiliency solutions (with a single
bit error model). For example, we show that Approxilyzer
determines that a very small loss in output quality (1%) can
yield large resiliency overhead reduction (up to 55%) for 99%
SDC coverage.

(3) We demonstrate how Approxilyzer can provide a first-
order estimate of the approximation potential of a general-
purpose program for a general error model in an automated
way (only requiring the knowledge of a quality metric),
enabling programmers or other tools to focus on the promising
subset of approximable instructions for further analysis. For
example, we show that, on average, static instructions resulting
in 27% (most conservative quality threshold) to 36% (no
quality threshold) of dynamic instructions in our applications



Fig. 1. Overview of the Approxilyzer framework and its usage.

have 32 continuous bits in their operand registers that are
candidates for approximation.

While Approxilyzer does not claim to solve the
perturbation-outcome problem, we believe that it provides a
significant step forward and advances the state-of-the-art in
the fields of approximate computing and low-cost resiliency.
Section VI describes the limitations of Approxilyzer and how
they can be partly overcome with future work and/or using
Approxilyzer in conjunction with other techniques.

II. APPROXILYZER AND ITS USAGE

This section gives an overview of the Approxilyzer frame-
work and its usage model, as illustrated in Fig 1.

A. Inputs to Approxilyzer

Underlying any approximate computing solution is the
need to quantify output quality through an end-to-end quality
metric. This metric is domain-specific [1], [23], [40] and
Approxilyzer assumes that the programmer or user will supply
it. Approxilyzer uses this metric to calculate the quality
degradation of the erroneous output with respect to an error-
free output.

Another parameter pertinent to many use cases for ap-
proximation is the quality threshold that sets a bound on
the maximum quality degradation that is acceptable to the
user. This is an optional parameter that Approxilyzer can
take as input from the user. Since programmers may want to
use Approxilyzer for analysis or tuning, Approxilyzer enables
them to specify quality threshold ranges if they so desire. In
the limit, no threshold range may be specified, in which case
Approxilyzer will perform its analyses for the full range of
quality degradation.

To assist the user, we envision incorporating simple domain-
specific libraries in our framework that include common sense
quality metrics and thresholds that a user can choose. For
example, the maximum of the relative (percentage) difference
between the golden and error-free output components, L2-
norms of matrices, and absolute differences are examples of
quality metrics that quantify the deviation of the erroneous
output from the error-free one. Negative values and infinities

are examples of obviously unacceptable outputs for many
financial applications – the user can choose to apply acceptable
thresholds based on such criteria. Section III-A describes
specific metrics and thresholds used in our evaluations.

Thus, Approxilyzer places the absolute minimum burden
on the user, only requiring an end-to-end quality metric and,
optionally, acceptable quality thresholds.

B. Assessing Output Quality with Approxilyzer

Approxilyzer aims to quantify the impact of a single bit
transient error on the program’s end-to-end output quality,
for error sites comprising each register bit of each dynamic
instruction in an execution. To accomplish this, Approxilyzer
builds upon Relyzer [12], a tool to predict the outcomes of
errors in all of the above error sites. Relyzer’s predictions,
however, only consider whether an error results in being
Masked, Detected, or a Silent Data Corruption (SDC). Relyzer
does not consider output quality, marking all corruptions in an
output (no matter how trivial) as an SDC outcome.

Relyzer uses a combination of error injection and program
analysis to make its predictions for error outcomes. Its key
insight is that errors that propagate through “similar” control
and data flow paths in the program result in similar outcomes.
It uses analysis and some heuristics to determine this similarity
and groups resulting error sites predicted to have similar
outcomes in an equivalence class. Using an error injection
experiment on a representative from an equivalence class (the
pilot), it predicts that all members of the class will have the
same error outcome.

Approxilyzer refines the notion of an error outcome by
including the quality of the erroneous output as part of this
outcome. It assesses the quality of the corrupted/erroneous
output by measuring its deviation from the error-free/precise
output using the application-specific quality metrics provided
by the user. Thus, an error that produces a quality degradation
of (say) 20% is said to have a different outcome from one
with a quality degradation of (say) 25%.

Approxilyzer hypothesizes that Relyzer’s main insight (that
errors propagating “similarly” through the program are likely
to result in similar outcomes) also holds true when considering
quality as part of the error outcome. That is, errors propagating
”similarly” through the program are likely to generate program
outputs of similar quality. This work uses Relyzer’s heuristics
related to control and data flow to predict similarity and to
divide error sites into equivalence classes. We define validation
experiments (Section III-C) to test this hypothesis and show
that this is indeed the case (Section IV-B). Thus, Approxilyzer
is able to enumerate, with high confidence, the output quality
generated when each single error site in the program is
perturbed by a single bit corruption. In the rest of the paper,
for the sake of brevity we will use the phrase output ”quality
of error site” to refer to the quality degradation in the output
generated when an error is injected in the error site.

1) Quality-Aware Error Outcome Categorization: This sec-
tion introduces a new categorization of error outcomes to
incorporate the notion of output quality into the category of



Fig. 2. A classification of errors.

errors traditionally known as Silent Data Corruptions (SDCs),
illustrated in Fig. 2.

We use the term Output Corruption (OC) to indicate the
outcome of an error where the execution runs to completion
without crashing the program, but where the output does not
match up identically to that of the golden output. In the litera-
ture, such outcomes have previously been uniformly referred to
as SDCs. However, we observe that there is a subclass of these
previously classified SDCs that is, in fact, detectable and not
strictly silent. Such outcomes can be detected using a variety
of low-cost mechanisms such as range detectors [11], [29].
We introduce additional detectors in Approxilyzer to catch
NaNs, infinity values, negative outputs (if not expected by
an application), and a check to see if the final output of the
erroneous execution generates the same number of values as
the golden output, irrespective of deviation. Our categorization
refers to the output corruptions detected through the above
means as Detectable Data Corruptions (DDC). It refers to
the remaining output corruptions, which are not detectable and
truly silent, as Silent Data Corruptions (SDC).

The SDCs are further categorized as follows:
SDC-Good: These SDCs are Highly Tolerable SDCs which

produce negligibly small quality degradations. This category
also includes outcomes where the deviations from the golden
output occur only in non-significant portions of the output
(e.g., program related statistics and timing information).

SDC-Maybe: These are potentially tolerable SDCs. The
entire class is not outright tolerable,but a subset of SDCs in
this class may be tolerable based on user-provided application
quality constraints – usually in the form of an acceptable
quality degradation threshold.

SDC-Bad: These produce such high quality degradations
that it can be reasonably assumed that they are not tolerable
for most applications and users.

The above categorization of the SDCs is dependent on
the domain-specific quality metric (required) and acceptable
quality thresholds (optional) provided by the user. If a quality
threshold is provided by the user, then whether an SDC is
tolerable or not is a binary decision based on whether the
resulting output quality degradation falls below or above the

TABLE I
ERROR OUTCOMES AND THEIR POTENTIAL FOR APPROXIMATION AND

RESILIENCY OVERHEAD SAVINGS.

Error outcome
category

Is this class of error
sites approximable?

Does this class of
error sites need

resiliency protection?
Masked 3 7

SDC-Good 3 7
SDC-Maybe Maybe Maybe

SDC-Bad 7 3
DDC 7 7

Detected 7 7

quality threshold. In the absence of user-provided quality
thresholds (e.g., in cases where the user wants to under-
take program analysis or tuning), Approxilyzer classifies the
SDC error sites into SDC-Good, SDC-Bad, and SDC-Maybe.
Note that the classification into SDC-Good and SDC-Bad
occurs only if the user chooses to apply common sense
domain-specific thresholds provided by the tool (Section II-A);
Otherwise all the SDC error sites are classified as SDC-
Maybe. For each error site belonging to the SDC-Maybe error
class, Approxilyzer also records its associated output quality
degradation. Hence, the output quality for a given error site
is characterized by its error outcome class and additionally, in
the case of SDC-Maybe, by the amount of quality degradation
introduced in the output.

C. Quality vs. Resiliency vs. Overhead

Approximate computing environments often trade accuracy
in the program output for gains in other system parameters
such as energy or performance. A framework like Approxi-
lyzer, which quantifies the output quality of each error site in
the program, can be used to tune the loss in output accuracy
with respect to other system benefits. We study one such
system benefit; namely, the reduction in the overhead costs
related to resiliency. We describe how Approxilyzer can be
used to tune overhead costs with respect to desired resiliency
protection for different output quality requirements (Section
III-D) and show that this can enable ultra-low cost resiliency
solutions (Section IV-C).

Approxilyzer uses its knowledge of each error site’s output
quality to decide whether that error site needs protection from
transient errors (Table I). Error sites that result in Masked
outcomes do not need to be protected since they produce the
golden output even in the presence of transient errors. Low
cost detectors (as discussed earlier) can be used to catch the
Detected category of errors and hence the associated error sites
do not need to be protected.

In the absence of Approxilyzer, we would have to protect
all OC error sites. With Approxilyzer’s quality information,
the system can selectively protect only those OCs that are
neither tolerable by the user/application, nor can be protected
by low cost detectors. Since SDC-Good is inherently tolerable
and DDC (like Detected) can be captured using other low
cost detectors, these error sites need not be protected. SDC-
Bad error sites produce intolerable outputs and hence they



always have to be protected. SDC-Maybes may or may not
need protection based on whether they meet the user’s quality
threshold. This reasoning about which error sites need protec-
tion from transient errors can be extended to instructions based
on the quality of their constituent error sites. If an instruction
contains an error site that needs to be protected, then we say
that the instruction needs to be protected.

Thus, based on the type and quality of the OCs produced,
Approxilyzer can selectively tune the set of OC causing
instructions chosen for protection from transient errors.

D. Exploring Approximation Opportunities

Given an unmodified program and end-to-end quality met-
rics, Approxilyzer analyses the program and automatically
provides the programmer with a set of instructions that are po-
tential first order candidates for approximations. Approxilyzer
does this by eliminating instructions that have unacceptable
output quality. The underlying argument that Approxilyzer
makes is that if an instruction produces an unacceptable quality
output in the presence of single bit corruptions, then it is highly
unlikely to generate an output of acceptable quality with more
vigorous perturbations introduced by approximation.

Table I provides a classification of which error outcome
categories are approximable and which are not. Error sites
that produce Detected, DDC and SDC-Bad outcomes are
clearly not acceptable and Approxilyzer marks them as not
approximable. SDC-Good and Masked error sites are marked
as approximable. SDC-Maybe error sites are potential candi-
dates for approximation depending on whether their quality
meets the acceptable quality threshold set by the user. The
approximation potential of an instruction is decided based
on the nature of its constituent error sites. If any error
site in an instruction is deemed not approximable then the
instruction is marked by Approxilyzer as not approximable.
Otherwise, the instruction is marked as a potential candidate
for approximation.

Since each error site in the application contains the infor-
mation regarding which dynamic instance of an instruction
it belongs to, Approxilyzer can identify dynamic instructions
that can be approximated. This can be useful to determine if
the application will benefit from approximation techniques at
the dynamic instruction granularity (e.g., task skipping [27]
and loop perforation [37]). Sections III-E and IV-D show
a case study for how Approxilyzer can be used to analyze
applications for approximation potential.

Since our framework uses transient single bit errors as
the error model, instructions marked as approximable by
Approxilyzer may be false positives, since they may produce
unacceptable quality output with approximation techniques
that use different error models. False negatives, however,
are expected to be rare since in most cases if a single bit
upset in an instruction causes an unacceptable outcome, then
it is highly likely that multi-bit upsets will also result in
unacceptable outcomes. While our approach is aggressive, we
believe it is still useful since it narrows the huge exploration
space for approximation to a manageable smaller set of

instructions on which it is feasible to do further rigorous and
targeted analysis. Another benefit of our approach is that the
identification of approximable instructions is automatic and
needs only minimal programmer input – end-to-end quality
metrics and quality thresholds – and no program modifications.
This makes it feasible even for novice programmers to analyze
any program for hidden approximation opportunities.

III. METHODOLOGY

A. Workloads and Quality Measures

Table II details the applications, inputs, quality metrics, and
quality threshold ranges used in our evaluations. To quantify
the quality of the corrupted output, we must find a measure of
its difference from the golden (error-free) output. We refer to
this “difference measure” as the quality metric – technically,
this is a quality degradation metric since the higher the value
of the difference, the lower the quality.

In the absence of specific domain studies and standard-
ization [1], [23], [40], we have done our best to choose
quality metrics that strike a balance between over- and under-
estimating an application’s tolerance to errors. For example,
consider outputs with multiple components. Without further
guidance, we must first determine a difference function for
each component and then a method to aggregate across the
components. Depending on the magnitude of the individual
components, we use the absolute difference (small magni-
tude) or the relative difference (large magnitude) for the per-
component difference function. To aggregate across compo-
nents, we use the maximum instead of the average. In cases
where there is an established common practice to analyze the
output, we use the corresponding quality metric. For example,
FFT produces a matrix and we use the relative difference in the
bounded L2 norm to determine the quality.1 More precisely,
given a golden output G and a faulty output F , both having
n components, where n ≥ 1, Table II uses the following three
quality metrics.
(1) max-abs-diff : This metric calculates the maximum ab-
solute difference between the components of the golden and
faulty outputs.

max-abs-diff = max(|G1−F1|, |G2−F2|, . . . , |Gn−Fn|) (1)

(2) max-rel-err: This metric calculates the maximum of the
relative error between the individual components of the golden
and faulty outputs.

rel erri =
|Gi − Fi|

Gi
∗ 100 (2)

max-rel-err = max(rel err1, rel err2, . . . , rel errn) (3)

(3) rel-l2-norm: This metric is typically used in mathematics
to directly compare two matrices. The metric estimates the
relative difference in the bounded L2 norms (BL2N) of the

1We do not use this for LU because it effectively produces two triangular
matrices and how the errors in the two are composed depends on how the
output is used.



TABLE II
APPLICATIONS, QUALITY METRICS, THRESHOLDS, AND QUALITY BINS.

Application Input Metric DDC SDC-Good SDC-Bad SDC-Maybe
QB : {Error range}

max-rel-err:
1: {10−4% ↔ 1%}

Blackscholes sim-large max-rel-err Fi > $500 max-abs-diff < $10−4 max-rel-err > 100% 2: {1% ↔ 2%}
[3] max-abs-diff Fi < $0 ...

99: {98% ↔ 99%}
100: {99% ↔ 100%}

max-abs-diff:
1: {10−4 ↔ 10−3}

Swaptions sim-small max-abs-diff Fi > $500 max-abs-diff < $10−4 max-abs-diff > $1 2: {10−3 ↔ 10−2}
[3] Fi < $0 3: {10−2 ↔ 10−1}

4: {10−1 ↔1}
512x512 No max-rel-err:

LU [43] matrix max-rel-err App-Specific max-rel-err < 10−4% max-rel-err > 100% same binning
16x16 blocks Detectors as Blackscholes

No max-rel-err:
Water [43] 512 molecules max-rel-err App-Specific max-rel-err < 10−4% max-rel-err > 100% same binning

Detectors as Blackscholes
No rel-l2-norm:

FFT [43] 64K points rel-l2-norm App-Specific rel-l2-norm < 10−4% rel-l2-norm > 100% same binning
Detectors as Blackscholes

Common to all Fi = NaN Errors in non-
apps Fi = Inf significant portions

#F != #G of the output

golden and erroneous matrices. For any matrix A, having n
elements, a1, a2, . . . , an, we define the following,

‖A‖BL2N =
‖A‖L2

n
(4)

where,

‖A‖L2 =

√√√√ n∑
i=1

a2
i (5)

The rel-l2-norm is thus defined as:

rel-l2-norm =
‖G− F‖BL2N

‖G‖BL2N
∗ 100 (6)

Table II also lists the quality threshold ranges for identi-
fying SDC-Good and SDC-Bad. We use fairly conservative
values that we believe will be reasonable for most users and
applications.

Finally, although output quality is a continuous function,
for ease of analysis and comparison, we discretize it into
multiple Quality Bins (QB), fine-grained enough to capture
small quality variations (last column of Table II). For example,
with the max-rel-err metric, the bins are 1% wide (except at
the boundary), and quality values of 12.1%, 12.6% and 13.3%
are assigned a QB of 13, 13, and 14 respectively. The rest of
the paper refers to QB values when quantifying quality. Thus,
SDC-Maybe with QB10 refers to an SDC-Maybe outcome
with an output quality degradation in the range specified by
QB10.

B. Error Injection Framework and Speed

Our error injection simulation infrastructure is similar to
that used for [12], based on Wind River Simics [41] and

GEMS [21] running our applications on OpenSolaris and
compiled to the SPARC V9 ISA.

We inject single bit flips in integer and floating point
architectural registers. Hence, we only consider instructions
that employ either an integer or floating point register as an
operand. For example, we do not inject errors in instructions
such as call (no operands), ret (no operands) or branches that
use special condition code registers. Such instructions will not
be considered for approximation or resiliency protection.

We perform error injections only in the pilots of the
generated equivalence classes. This can still lead to a large
number of error injections, especially for longer applications.
In order to reduce the simulation time, we only study 99%
of the error sites in the application, thereby trading off
simulation time for a modest loss in coverage [12]. The
1% of error sites not included in the study do not detract
from the observations and gains reported. While identifying
approximable instruction (Section II-D), these remaining error
sites might introduce some false positives (in the event that
they produce unacceptable errors). This is, however, consistent
with our goal to tolerate some false positives, while mini-
mizing false negatives, in the quest to uncover approximation
opportunities in the application. For resiliency overhead tuning
(Section II-C), these unexplored error sites might represent
missed opportunity (in the event that they produce SDCs) for
further overhead reduction using Approxilyzer.

Approxilyzer retains Relyzer’s speed benefits, with neg-
ligible additional overheads. Compared to a (hypothetical)
framework that would perform an error injection for each error
site, Relyzer is able to prune error injections by 3 to 5 orders
of magnitude [12]. The remaining error injections complete on



our cluster of 200 machines in a few days. Approxilyzer adds
a few hours to this process to perform quality calculations
and error outcome categorizations. The analysis to generate
quality vs. resiliency vs. overhead curves for an applica-
tion (Section III-D) takes several minutes. Analyzing error
outcomes and quality to identify approximable instructions
(Section IV-D) takes a few seconds per application.

C. Approxilyzer Validation

1) Approxilyzer Baseline Validation: Approxilyzer relies on
Relyzer’s heuristics to group error sites that produce similar
quality outcomes into an equivalence class. It predicts the
quality of each element of an equivalence class based on
the outcome of a fault injection experiment on its pilot. To
validate these predictions, we perform experiments similar to
those in [12].

The validation experiment asks the question: how accurately
does the output quality of the pilot predict the output quality
of the other error sites in its equivalence class? For validating
a single pilot, we perform error injections in a sample of error
sites (called Population) from the pilot’s equivalence class. We
then compare the output quality of the population with that of
the pilot to gain confidence that the pilot accurately represents
the population, and hence the equivalence class. For example,
a pilot that produces a DDC has a 100% validation/prediction
accuracy if the injection experiments for all of its associated
population also produced DDCs.

To validate a pilot of an SDC-Maybe class, we further
require that the QB of the pilot match that of the population
to be considered a correct prediction. For example, consider
a pilot X that generates an SDC-Maybe with QB12. Suppose
86% of its population is SDC-Maybe with QB12, 6% is SDC-
Maybe with QB13, 5% is SDC-Maybe with QB10, and 3% is
SDC-Bad. Then the prediction accuracy of pilot X is 86%.

The overall prediction accuracy for an application is ob-
tained by calculating the average of the prediction accuracy
across all the pilots studied, weighted by the size of their
equivalence class.

2) Flexible Quality Window: Requiring the pilot’s QB to
exactly match the QB of the associated population is unnec-
essarily conservative and a tall order for any tool, especially
for outcomes with quality at the QB boundaries. We therefore
introduce a flexibility parameter, δ, that allows a fine-grained
margin of error at QB boundaries. For the validation of pilot
X described above, setting δ = x means that an error site in
its population with QB of 12 ± x would be considered as a
correct prediction. Thus, pilot X’s prediction accuracy with
δ = 1 is 92% and with δ = 2 is 97%. The baseline validation
described in Section III-C1 is the same as setting δ = 0.

3) Equalizing Error Outcomes: We can further loosen our
constraints on validation by considering the context in which
Approxilyzer is used as follows.

Validation for Resiliency: In the first case, Approxilyzer is
used to determine which instructions need to be protected
for resiliency (Section II-C). We therefore do not need to
distinguish between Masked, SDC-Good, DDC, and Detected

outcomes since all of them do not require protection. We
therefore group these outcomes together.

Validation for Approximation: In the second case, Approx-
ilyzer is used to determine which instructions are approx-
imable (Section II-D). We therefore do not need to distinguish
between Masked and SDC-Good outcomes since they are
approximable, and can group them together. Similarly, we can
group SDC-Bad, DDC, and Detected outcomes together since
they are not approximable.

Thus, for a given use case, a pilot is said to have a correct
prediction for a member of its equivalence class if both the
pilot and the member produce an outcome within the same
group as defined above for the use case. We henceforth use
δres and δapprox when considering use-specific validations for
resiliency and approximation respectively. We continue to use
δ for use-oblivious validations.

As an example, consider a Pilot Y that generates a DDC
and has the following population outcome distribution: DDC:
85%, Detected: 7%, SDC-Good: 5% and SDC-Bad: 3%. The
prediction accuracy of Y is 85% for δ = 0, 97% for δres = 0,
and 95% for δapprox = 0.

4) Statistical Confidence: We perform the validation exper-
iments for ∼700 pilots from each application. This gives us a
99% confidence interval with a 5% error margin. We validate
each pilot against a sample population size of 750 (drawn
randomly from the equivalence class), which also gives us a
statistical confidence of 99% with a 5% error margin. In all, we
perform approximately 2.6 million error injection experiments
for validating Approxilyzer.

D. Tuning Quality vs. Resiliency vs. Overhead

We demonstrate the ability of the user to harness Ap-
proxilyzer to tune application output quality vs. other system
attributes with a study targeted towards system resiliency. As
explained in Section II-C, we can target specific static instruc-
tions for resiliency protection based on the quality threshold
specified. Given additional criteria regarding resiliency (the
fraction of output corruption producing error sites in the
application that must be protected, hereby referred to as ”re-
siliency coverage” or simply ”coverage”) and the maximum
overhead to be incurred for protection, an optimizer can pick
the optimum balance of output quality, resiliency coverage,
and overhead to target user requirements. We produce tuning
curves that show the tradeoffs for different combinations.

To produce the different tuning curves, we first identify the
instructions that need resiliency protection for different output
quality thresholds (range of QBs). Then we use a 0/1 knapsack
algorithm to pick the instructions for resiliency protection that
offer the specified coverage for the least overhead. A similar
methodology is used in [12] to tune resiliency vs. overhead,
but without relaxation of output quality.

We assume instruction redundancy as our error protection
scheme and charge one instruction worth of overhead to
protect a given instruction. Hence, the execution overhead cost
for protecting static instruction X is equivalent to the dynamic
instruction count of X.



To illustrate the above with a simple example, consider
two candidate static instructions A and B, each responsible
for 30% and 20% of the output corruption error sites in
the application, and producing 5% and 10% of the dynamic
instructions, respectively. Assume Approxilyzer determines
that the maximum quality degradation produced by an error
in A and B is 1% and 4% respectively. Then for no quality
loss, to cover 50% of the output corruption error sites (re-
siliency coverage), both A and B have to be protected and
the (execution) overhead cost of doing so is their cumulative
dynamic instruction count; i.e., 15%. If the user is willing to
accept a quality loss of 2%, we do not have to protect A, and
essentially get the resiliency coverage afforded by A (30%) at
no additional overhead cost. For resiliency coverage of 50%
(with acceptable quality loss of 2%), we will need to protect
B and incur an overhead of 10%.

E. Exploring Approximation Opportunities

As mentioned in Section II-D, Approxilyzer can be used
as a tool to analyze the first order approximation potential
of an unknown application along different dimensions. We
show one such use case where we use Approxilyzer to analyze
the approximation potential along the dimension of static
instructions for our five workloads. We use the same tech-
nique used to identify which static instructions are potentially
approximate, to also identify approximation along different
static instruction granularities. For example, if all the error
sites related to a particular register in a static instruction
were deemed approximable, then we say that the register is
approximable. In this case study we do this analysis for the
following static instruction granularities:
(1) Full Instruction (FI): The entire static instruction (i.e.,
all register bits) is approximable.
(2) Partial Instruction, Full Register (PI FR): At least
one full register in the static instruction is approximable.
(3) Partial Instruction, Partial Register, x bits (PI xb): At
least one x bit long register chunk in the static instruction is
approximable.

For the purposes of this study we do not assume a qual-
ity threshold. Instead, we estimate the best and worst case
approximation bounds. For the best case, we assume that
all the SDC-Maybes have acceptable quality and hence are
approximable. For the worst case we assume that none of
them have acceptable output quality and therefore are not
approximable.

IV. RESULTS

A. Output Corruption Distribution

Fig. 3 shows the distribution of outcomes for error sites in
the studied applications.2 Each application exhibits a unique
distribution of error outcomes. At 68.8%, LU contains the

2The OC (originally SDC) rates reported in this work are different from
the rates reported in previous work [11], [12] as our error model is different.
We study errors in both integer and floating point architectural registers, while
our prior work only considered integer registers.

highest percentage of Output Corruption (OC) causing error
sites and Swaptions, at 15.6%, the lowest.
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Fig. 3. Distribution of error outcomes for the applications studied.
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Fig. 4. Distribution of output corruptions (OC) in integer (INT) and floating
point (FLOAT) registers.

Fig. 4 shows the different categories of output corruptions,
separately for integer and floating point register error sites.
Swaptions and Water show very high percentage of SDC-Good
at 76% and 58% respectively while Blackscholes produces
68% DDC (for both Integer and Float combined). Swaptions
and FFT show an interesting dichotomy in the behavior of
errors in the integer vs. floating point registers, implying
perhaps, a need for separate techniques for resiliency and
approximation across the two different register classes. LU’s
OC error sites are almost exclusively (>98%) composed
of SDC-Bad outcomes. This may either imply that LU is
inherently not tolerant to errors or that the quality metric used
to classify errors in the output of LU may not be the correct
choice.



These results illustrate how Approxilyzer can be employed
to automatically analyze an application to gain insights into
its behavior in the presence of perturbations.

B. Approxilyzer Validation
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Fig. 5. Approxilyzer validation geared towards resiliency.
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We carry out validation experiments as described in Sec-
tion III-C. We discuss the findings for validation for approxi-
mation and resiliency separately below.

Validation for Resiliency: The results for validation geared
towards resiliency are shown in Fig. 5. All of the applications
show very high pilot prediction rates with an average predic-
tion rate of 96% across applications using a very fine quality
window of 2 (bar corresponding to δres = 2).

Swaptions and Water see big gains in validation just by
applying the δres optimization. Both of these applications have
high SDC-Good rates (Fig. 4) and therefore many pilots that
are picked for validation belong to the SDC-Good outcome

category. Some of these equivalence classes (with SDC-Good
pilots) contain a mix of Masked and SDC-Good error sites,
leading to lower overall validation for δ = 0.

Water especially has a high rate of SDC-Good outcomes
which are due to very small errors (< 10−6%) in the program
statistics part of the output file. Approxilyzer heuristics (not
surprisingly) combine these error sites with Masked outcomes
into equivalence classes. As a result, applying the δres opti-
mization causes the validation rate of Water to jump from 71%
to 98%.

In addition to having equivalence classes with mixed SDC-
Good and Masked outcomes (as described above for Water),
Swaptions also has some pilots with DDC outcomes (Fig. 4)
belonging to equivalence classes that feature a mix of DDC
and Masked outcomes. These pilots represent error sites from a
few floating point instructions that process randomly generated
numbers. If the error causes the random number to exceed the
(expected) range of 0 to 1, it causes floating point overflows
which result in NaN values. Because Approxilyzer heuristics
cannot accurately distinguish this special case, Swaptions
contains some equivalence classes with a mix of Masked and
DDC outcomes which results in poor validation for δ = 0.
Applying the δres optimization, causes the validation rate of
Swaptions to go up from 79% to 99%.

While still high at 90% (for δres = 2), Blackscholes shows
the lowest validation accuracy of the applications studied.
Further analysis shows that this is due to a few pilots whose
equivalence classes have a mix of SDC-Maybe and SDC-
Bad outcomes. This is why increasing the quality window
size (δ) does not cause the prediction rate to increase. The
reason behind the mixed equivalence class can be attributed
to the fact that Blackscholes calculates the option price for
a portfolio containing more than 64,000 options and hence,
the same instructions produce OCs of different quality based
on the input being processed at any given execution cycle.
While range detectors to capture certain SDC-Bad outcomes
and specialized heuristics to better capture variations in data
patterns can be applied to handle some of these cases, we leave
their implementation to future work. In spite of these special
cases, Blackscholes shows high prediction rate.

Validation for Approximation: Fig. 6 shows the graph
for Validation considering Approximation. On average, the
validation percentage for δapprox = 2 is 94% across all
applications. Swaptions shows lower validation predominantly
due to poorly validated DDC pilots belonging to a few floating
point instructions (validation accuracy for integer pilots with
δapprox = 2 is 97%) operating on random numbers, as
described above. While the δres optimization equalized these
outcomes, the δapprox considers DDC and Masked outcomes
separately and hence the validation accuracy is not improved.
Simple range detectors to check the range of the random
numbers can resolve this issue and we leave its implementation
to future work.

Overall, the average validation percentage, across δapprox =
2 and δres = 2, for the applications studied is 95%. Thus, we
conclude that Approxilyzer can capture the Output Corruption



quality – at very fine granularities – with high precision for
the purposes of both Resiliency and Approximate Computing.

C. Tuning Quality vs. Resiliency vs. Overhead

Fig. 7 shows the resiliency overhead cost vs. coverage for
different levels of acceptable output quality degradation using
the methodology in Section III-D. We show graphs for four of
our five benchmarks (the fifth, LU, is discussed later). Each
graph shows the following curves corresponding to different
levels of acceptable quality degradation.

(1) All Output Corruptions: This curve represents the
optimal overhead vs. coverage when all OC causing instruc-
tions are protected. It represents the state-of-the-art in the
absence of Approxilyzer’s output quality impact information to
distinguish instructions that produce acceptable quality output.

(2) All SDC-Bad + SDC-Maybe: This curve shows the op-
timal overhead vs. coverage when all the instructions causing
SDC-Bad and SDC-Maybe outcomes are protected. This is the
graph that will be generated by Approxilyzer in the absence of
specific user-defined quality thresholds. Approxilyzer automat-
ically removes the instructions that only produce SDC-Good
and DDC from the list of instructions to protect.

(3) All SDC-Bad + SDC-Maybe with QB>x: These are
the optimal overhead vs. coverage curves with user-specified
quality threshold x. For these curves, Approxilyzer does not
protect instructions that produce SDC-Maybe with QB≤x from
the list of instructions protected. This essentially means that if
a user says that she is willing to tolerate x% quality loss in the
output, then we need not protect the instructions that we know
will not suffer a quality degradation greater than x% in the
presence of transient errors. For convenience, the graphs show
x as an actual application-specific quality threshold instead of
a QB number.

The gaps between the various curves for each point along
the x axis represent the overhead/cost savings by not applying
resiliency protection to those instructions that produce ac-
ceptable quality loss when perturbed. The benchmarks shown
in Fig. 7 show significant overhead savings if the user can
tolerate very small quality loss. For example, if the user
can tolerate a 1% quality degradation in the output, then the
resiliency overhead costs can be reduced by 20%, 55%, and
11% for Blackscholes, Water and FFT respectively, while still
achieving 99% coverage (the difference between the All Output
Corruptions and All SDC-Bad + SDC-Maybe with QB>1%
curves at 99% on the x axis). Similarly, for a quality loss
of less than one hundredths of a penny in final stock price
(All SDC-Bad + SDC-Maybe with QB>$0.001), Swaptions
achieves an overhead reduction of 26% while providing 99%
coverage.

Swaptions has many instructions that exclusively contain
SDC-Good error-sites. Hence the overhead is significantly
reduced by not protecting those instructions (99% coverage for
All SDC-Bad + SDC-Maybe has an overhead of 3%). Further
increasing the application’s quality degradation threshold (QB)
provides marginal benefits (2% overhead reduction).

Blackscholes also does not show any benefit from increasing
the quality degradation threshold (QB), but for a different
reason. As mentioned in Section IV-B, many (static) instruc-
tions in Blackscholes produce a mix of SDC-Bad and SDC-
Maybe outcomes (with wide QB ranges) and hence they are
always protected. Blackscholes does, however, achieve a 20%
overhead reduction by not protecting instructions that only
generate DDC and/or SDC-Good outcomes.

FFT, on the other hand, displays a behavior contrary to
Swaptions and Blackscholes – all its overhead reductions
come from increasing the acceptable quality threshold of
SDC-Maybes (the curves for All Output Corruptions and
All SDC-Bad + SDC-Maybe sit on top of each other). This
can be attributed to the fact that none of the instructions in
FFT exclusively produce only DDC or SDC-Good outcomes.
Changing the quality threshold from QB>1% to QB>5%
results in an additional overhead reduction of 12% for the
99% coverage point.

Water shows the most overhead reduction while tolerating a
small quality loss. This is because Water has many instructions
that contain a mixture of SDC-Good and SDC-Maybe error
sites that result in very small quality degradation. Hence even
a small quality degradation threshold results in large gains.

LU (not shown in the figure for brevity) shows no gains
from either quality tuning or from not protecting SDC-Good
and DDCs. This is because, as seen from Fig 4, LU produces
only SDC-Bad corruptions and hence all of the instructions
need protection.

In summary, most of the applications show significant
resiliency overhead reductions while suffering very small
accuracy losses. Thus, Approxilyzer can be used to target ultra-
low cost resiliency solutions in an approximate environment.

D. Identifying Approximable Instructions

Figs. 8(a) and 8(b) show, for each application the worst
and best case bound, respectively, on the number of static
instructions, marked by Approxilyzer as candidates for approx-
imation (as described in Section III-E). In order to understand
the potential impact of approximating these static instructions,
Figs. 8(c) and 8(d) show the proportion of dynamic instances
produced by these static instructions in the full application.
Note that while the static instruction percentage shown is for
the fraction of static instructions studied, for a better insight,
the dynamic instruction percentage reported is the fraction over
the entire application, which includes dynamic instances of
instructions we do not study (Section III-B).

The graphs show that, on average, between 34% (worst
case) to 40% (best case) of the static instructions studied have
32 bits of continuous register chunks that can be candidates for
approximation (assuming a technique can exploit approxima-
tions at that granularity). These static instructions account for
27% (worst case) and 36% (best case) of dynamic instructions
respectively. Of the applications studied, Swaptions shows the
most potential for approximation. This is commensurate with
its high SDC-Good and overall low OC error sites, as shown
in Section IV-A.
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Fig. 7. Tuning resilience vs. execution overhead vs. output quality for different applications.

Another insight gained from this experiment is that even
applications that do not have full instructions that are approx-
imable, may contain pockets of smaller register chunks (partial
instructions) that are tolerable to errors. Hence, techniques
that can exploit approximation at these finer granularities
can conceivably achieve big gains and unlock the hidden
potential in many new applications traditionally not considered
as candidates for approximate computing. For example, in the
best case, while only 4% of the static instructions (producing
3% dynamic instructions) in Blackscholes are marked as can-
didates for (full instruction) approximation by Approxilyzer,
this number goes up to 29% (31% dynamic instructions)
when considering individual 32b register chunks. While in this
work we only consider static instructions for approximation,
such analysis can also be carried out along the dimension
of individual dynamic instructions to further understand the
application’s approximation potential.
In summary, Approxilyzer can be used to understand the best
and worst case bounds on the approximation potential of
an application even without a clear quality threshold. Such

analysis can unlock much hidden approximation potential that
can then be targeted by specialized techniques.

V. RELATED WORK

Many techniques have been proposed that leverage ap-
proximate computing for improved performance, energy or
reliability. Loop perforation [37], voltage scaling [14], [35],
approximate ALU computations [10], [33], approximate ker-
nels [2], [31], [36], neural hardware [8], and memory system
approximations [34], [19] are all possible techniques that trade
off accuracy for system benefits.

Programming language support, such as that in [6], [22],
[24], [32], [33] helps programmers abstractly express approxi-
mations and check program correctness at the cost of increased
programmer burden. Recent frameworks [5], [22], [25] build
on these languages to automatically identify approximate
regions of the code while providing some statistical [25] or
probabilistic [22] guarantees on the final end-to-end error.
While these frameworks advance the state-of-the-art to greatly
reduce programmer burden, they still require the programmer
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Fig. 8. Graphs (a) and (b) show the first order worst and best case bounds respectively for the percentage of static instructions (studied) that are approximable
for each application at different granularities of approximation. Graphs (c) and (d) show the percentage of dynamic instructions (in the full application)
generated by these static approximable instructions in the worst and best case respectively.

to adopt a new programming language and/or modify their
source code. Thus, they cannot be used for very large multi-
kernel programs (static analysis may be complicated and
under-estimate the approximation potential) or for programs
where the source code is not available (such as legacy code).
We believe that Approxilyzer is a complementary technique
and can be used as a front end plugin to these frameworks. A
concurrent work [20] provides statistical guarantees on final
output quality given an approximate kernel and accelerator
configuration using compiler support and hardware binary
classifiers. While this work focuses on coarse-gain approxi-
mation with accelerators, Approxilyzer is a general framework
which studies approximation at the fine granularity of single
instructions.

SAGE [31] automatically generates approximate kernels
for GPUs but like other methods [2], [16] uses an online
mechanism to catch unacceptable quality degradation in a
reactive fashion. Approxilyzer on the other hand provides

offline output quality information. Techniques such as [38]
control output quality constraints by tuning various knobs in
an approximate program. Approxilyzer solves the problem of
identifying approximate code and as such is an orthogonal
technique.

The idea of identifying unacceptable output corruptions
for selective reduced-cost resiliency protection has previously
been explored in the realm of soft computations. A combi-
nation of error injections and static analysis is used in [39]
to identify Egregious Data Corruption (EDC) prone code and
data segments in soft computations that can then be protected
by detector placements. IPAS [17] uses machine learning to
identify and protect only those Silent Output Corruptions
(SOC) instructions that alter the output of scientific codes.
Khudia et al. [15] use compiler analysis to identify critical
variables in the application that are likely to generate Unac-
ceptable Silent Data Corruptions (USDCs) in the presence of
errors and only protect those using strategic expected value



checks. Approxilyzer classifies error outcomes into categories
based on approximation potential and predicts the impact
errors in individual instructions with high accuracy. This
allows for very fine tuning of resiliency protection schemes
for different quality and overhead requirements.

Application of approximate computing to hardware re-
siliency has also been demonstrated in specialized domains
such as bio-medical applications. Sabry et al. [28] study
Electrocardiogram (ECG) monitoring wireless body sensor
nodes and tradeoff inaccuracies inherent to the domain to
achieve resiliency overhead savings. Approxilyzer also ex-
ploits accuracy loss for resiliency overhead savings but does so
in a manner that can be used by any general-purpose program.

VI. CONCLUSIONS AND FUTURE WORK

We present a systematic framework, Approxilyzer, for
instruction-level approximate computing and show its applica-
tion to hardware resiliency. Approxilyzer uses a new scheme to
classify error outcomes into categories based on approximation
potential. This categorization is based on an end-to-end quality
metric that is application-specific. We perform an extensive
validation to show that Approxilyzer is able to predict the
impact of an instruction-level error on output quality with high
accuracy (average of 95% accuracy for fine-grained quality
classification observed over 2.6 million error injections), for
all dynamic instructions in a program execution.

Approxilyzer also presents a mechanism to quantitatively
tune output quality, resiliency, and overhead to the user’s target
goals for the error model assumed. Furthermore, for general
error models, Approxilyzer automatically identifies candidate
instructions for approximation with no programmer burden
(except for information on the quality metric), enabling a more
focused analysis for the general error model by other tools or
the user.

Although Approxilyzer has several limitations, we believe
it moves the field of approximate computing forward in a
significant way, providing a unique contribution to the “holy
grail” problem of accurately predicting output quality impact
of a general perturbation on a general computation without
programmer burden. We list below some of the key limitations
that we wish to address in our future work.

Error Model: We assume single-bit transient errors in an
instruction’s integer and floating point registers. Such an error
model can be easily extended to cover the many microarchitec-
ture level errors that also manifest as bit flips in architectural
state read by an instruction. For example, a consequential bit
flip in a pipeline latch can often be modeled as a bit flip in
architectural state pertaining to the instruction that currently
occupies the latch (if any). Validating Approxilyzer for such
low level errors is part of our future work. (Relyzer already
models and validates against errors in address generation
units [12].) Admittedly, not all errors are single bit flips
affecting only one instruction. We have already shown how
given the context, we can derive useful information from single
bit flip information to narrow down the subset of approximable
instructions. We believe we can apply similar ideas to prune

the analysis space for more general error models and use cases
as well.

Input Dependence: Comprehensively analyzing the impact
of errors on output quality even for a single program input is
challenging and is the focus of this work. Considering different
inputs is important and is our future work. Our goal (albeit
ambitious) is to integrate Approxilyzer within the software
testing workflow. We believe we can leverage the large body
of work dealing with input dependence in software testing for
our purposes.

Other Work: Unlike many prior works that aim to ap-
proximate data [32], [33], [34], Approxilyzer focuses on
instructions. We are currently evaluating the effectiveness
of a data- vs. instruction-centric approach to uncover ap-
proximation potential. Examining approximation potential at
higher granularities (e.g., function or data structure level) and
interaction with other granularities is also an interesting future
direction. Finally, we would also like to validate Approxilyzer
for multithreaded programs, likely with the heuristics modified
to incorporate similarities in synchronization paths.
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